最近的

This is a working paper template developed by the Interdisciplinary Laboratory of Computational Social Science at the University of Maryland, College Park.

This is a template for a Lab report following an IEEE paper. Modified by Francisco Tovar after Michael Sheel original document. This document will be used for EEET2493 class.

This document serves both as a template and a guideline for your report. You can replace headings and body text with your content. Before you start writing, however, we recommend that you carefully consider the instructions in this document.

Custom Latex Document Class used exclusively by Engenius at Aveiro's University

LaTeX template for the International Journal on Magnetic Particle Imaging (IJMPI). Articles can be submitted at the journal homepage.

En los últimos años se ha visto un auge en el uso de los sistemas de bases de datos NoSQL y junto a ello se ha popularizado la idea de aplicaciones de Persistencia Políglota. Esta consiste en que gracias a la gran variedad y cantidad de datos, y los diversos servicios que pueden dar las aplicaciones hoy en día, es probable que un único tipo de sistema de almacenamiento no sea capaz de cubrir de forma eficiente todas las necesidades de la aplicación. En este articulo se dará una idea general de las Aplicaciones de Persistencia Políglota dando información acerca de su funcionamiento, arquitectura y motivación; y ademas se hablara específicamente de como aplicar la Persistencia Políglota con MongoDB y Neo4j. Palabras Clave: NoSQL, Persistencia Políglota, MongoDB, Neo4j, Neo4j Doc Manager

Cour 1 ere AS

Deep learning is a fast growing field in tech that is often described to have limitless potential. This paper describes its history, why the explosion in popularity, and how it works. An example of classifying images of handwritten digits (MNIST) will be explored using a fully connected network and a convolutional neural network. Next, a brief description of the tools necessary for the reader to implement his or her own network. Finally, a view of the state of the art being developed by companies such as Google, Facebook, and Baidu.

Manufacturing industries are changing rapidly towards more flexibility and autonomy. The RoboCup Logistics League (RCLL) and RoboCup@Work tackle research questions in this domain focusing on automated reasoning and planning, and mobile manipulation respectively. However, future scenarios will require both aspects (and more) and will most likely operate with more heterogeneous systems. In this paper, we propose a cross-over challenge to foster closer cooperation among the two leagues to address these challenges. We outline four integration milestones and propose a specific scenario and task for the first milestone. The effort is driven by stakeholders of both leagues.