Collection of statistics formulae taken from the perennial text book Lind, Douglas A. et. al. (2015): Statistical Techniques in Business and Economics, 16 ed. (2015).
Computer vision systems can be applied to a wide variety of tasks, but some of the most interesting are those related with security and surveillance. Within this group, our application for Video Surveillance for Road Traffic Monitoring can be placed. We propose a solution based on machine learning and video analysis techniques that involves the whole process: database evaluation, background estimation, foreground segmentation, video stabilization and object tracking. As a result of this, our system will be able to monitorize some basic parameters of traffic flow as vehicles counting or speed estimation.
C. Carmona, A. Flores, A. Hernández, A. Imbernon, A. Mosella
En este documento se muestra un acercamiento identificación de especies arbóreas mediante Histogramas De Gradientes Orientados y maquinas de soporte Vectorial.
Paper presented at ICCV 2019.
This paper targets the task with discrete and periodic
class labels (e.g., pose/orientation estimation) in the context of deep learning. The commonly used cross-entropy or
regression loss is not well matched to this problem as they
ignore the periodic nature of the labels and the class similarity, or assume labels are continuous value. We propose to
incorporate inter-class correlations in a Wasserstein training framework by pre-defining (i.e., using arc length of a
circle) or adaptively learning the ground metric. We extend
the ground metric as a linear, convex or concave increasing
function w.r.t. arc length from an optimization perspective.
We also propose to construct the conservative target labels
which model the inlier and outlier noises using a wrapped
unimodal-uniform mixture distribution. Unlike the one-hot
setting, the conservative label makes the computation of
Wasserstein distance more challenging. We systematically
conclude the practical closed-form solution of Wasserstein
distance for pose data with either one-hot or conservative
target label. We evaluate our method on head, body, vehicle and 3D object pose benchmarks with exhaustive ablation studies. The Wasserstein loss obtaining superior performance over the current methods, especially using convex mapping function for ground metric, conservative label,
and closed-form solution.
Xiaofeng Liu, Yang Zou, Tong Che, Peng Ding, Ping Jia, Jane You, B.V.K. Vijaya Kumar
En los últimos años se ha visto un auge en el uso de los sistemas de bases de datos NoSQL y junto a ello se ha popularizado la idea de aplicaciones de Persistencia Políglota. Esta consiste en que gracias a la gran variedad y cantidad de datos, y los diversos servicios que pueden dar las aplicaciones hoy en día, es probable que un único tipo de sistema de almacenamiento no sea capaz de cubrir de forma eficiente todas las necesidades de la aplicación. En este articulo se dará una idea general de las Aplicaciones de Persistencia Políglota dando información acerca de su funcionamiento, arquitectura y motivación; y ademas se hablara específicamente de como aplicar la Persistencia Políglota con MongoDB y Neo4j.
Palabras Clave: NoSQL, Persistencia Políglota, MongoDB, Neo4j, Neo4j Doc Manager
Deep learning is a fast growing field in tech that is often described to have limitless potential. This paper describes its history, why the explosion in popularity, and how it works. An example of classifying images of handwritten digits (MNIST) will be explored using a fully connected network and a convolutional neural network. Next, a brief description of the tools necessary for the reader to implement his or her own network. Finally, a view of the state of the art being developed by companies such as Google, Facebook, and Baidu.