This paper documents a numerical model, developed for the McGill Rocket Team based on classical chemical thermodynamics coupled with the Trebble-Bishnoi equation of state, to solve for the oxidizer tank conditions (pressure, temperature, mole flowrate and liquid/vapour equilibrium) during the operation of a hybrid rocket. This model is modular and can be coupled to fluid mechanics and combustion chamber models for a more detailed analysis of a hybrid rocket engine.

This is written as a learning material for high school students, but since it is in LaTeX, I submitted it to the Overleaf Gallery.
A guide for answering questions asking “define” or “what is meant by”, as well as some other tricky questions.

My dissertation for my Astrophysics MPhys degree at the University of Liverpool compiles research, simulations and calculations to come to concise conclusions about the feasibility of a human mission as stated in the project title.

The axion is a hypothetical particle, introduced by the Peccei-Quinn theory in 1977 as a solution to the strong CP problem in quantum chromodynamics. The axion, if it exists, must have a very small mass, and must be very weakly interacting with baryonic matter, giving it the abbreviation WISP (Weakly Interacting Sub-ev Particle). The predicted attributes of the axion would give it the ability to pass directly through an opaque wall without obstruction, and this is how the ALPS experiment (Any Light Particle Search) at DESY in Hamburg is exploring the possibility of their existence. In this report, we will use matrix methods to reproduce the relationship between axion mass and axion coupling as published by the ALPS experiment \autocite{Ehret, K. et al (2010). New ALPS results on hidden-sector lightweights} in 2010, using their conversion probability to plot the result. Note that all equations, unless otherwise stated, are in natural units ($c=1$, $\hbar = 1$).