Overleaf 模板库社区文章 — Recent
论文、演示文稿、报告等,以 LaTeX 编写并由我们的社区发布。

Microcontrollers.

Resume of Yogesh Patil

En esta práctica utilizamos un láser con el cual medimos los diferentes ángulos resultantes que este hacía cuando era reflejado o refractado con diferentes ángulos de incidencia, con la finalidad de comprobar las leyes de reflexión y refracción de la luz.

An attempt to create a compact introduction to Overleaf and LaTeX in general. Topics and examples are tailored to meet the needs of The Hudson School. This is a work in progress. The document works well as a PDF and most examples are included verbatim.

An indoor positioning system relying on time difference of arrival measurements of ultrasonic pings from fixed transmitters. Code available at https://github.com/YingVictor/ultrasonic-positioning

Considering the growing impact of ideas nowadays, via quaternary sector, the plagiarism detection has become constant in texts, songs, as well as source codes. This work proposes the creation of the tool \nameOfProgram \ for plagiarism detection in simple texts with GNU GPL license. \nameOfProgram \ was designed to allow your extension for plagiarism detection in source codes. The tool was tested and results are presented in this paper.

Este ejemplo hace uso de los paquetes circuitikz y siunitx para dibujar el esquema de un amplificador de 18W a base de transistores bipolares y MOSFET. El circuito fue tomado de http://www.circuitstoday.com/mosfet-amplifier-circuits.

En esta práctica se utilizarán conocimientos de cinemática para encontrar el valor de la aceleración gravitacional, por medio de dos experimentos diferentes, uno que involucra la caída libre y el otro involucra un péndulo, además, se estimará la confianza y validez de los resultados.

This report gives an overview of the various machine learning algorithms implemented to detect certain comments that may appear insulting to another participant on a social networking platform. Feature selection was performed using n-grams, and the WEKA machine learning toolkit was used to build supervised learning clasifiers, that provided an accuracy of 82% on the test dataset. The dataset was obtained from the popular data science competition portal, Kaggle.