SPINS 3 Tables
作者:
Erin De Pree
最近上传:
5 年前
许可:
Creative Commons CC BY 4.0
摘要:
Templates for tables in SPINS lab 3 for PHYS 462 Quantum Mechanics at SMCM.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SPINS 2 from Oregon State University %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[12pt]{article}
% colors
\usepackage[dvipsnames,svgnames,x11names]{xcolor}
% graphics
\usepackage{graphics}
% TikZ picture environment
\usepackage{tikz}
\usetikzlibrary{arrows,scopes,fadings}
% Math formatting
\usepackage{amsmath}
% More math
\usepackage[fleqn,tbtags]{mathtools}
% Physics symbols
\usepackage{physics}
%\usepackage{mdwlist}
% tables
\usepackage{tabu}
%Page Margins
\usepackage{geometry}
\geometry{top=1.5in,left=1in, right=1in, bottom = 1.5in}
% Useful commands
% Answer in write up
\newcommand{\ans}[1]{\textbf{\color{Black} #1}}
% Write up on the board
%\newcommand{\board}[1]{\textbf{\color{Red} #1}}
% ask question
%\newenvironment{question}{\begin{quotation} \noindent \textbf{\color{Blue} Question}\:\:}{\end{quotation}}
%\newcommand{\ask}[2]{\begin{quotation} \noindent {\color{Blue} \textbf{Question:}\:\: #1} \\ {\color{Purple} #2}\end{quotation}}
% answer
%\newcommand{\ans}[1]{{\color{Purple} #1}}
% Vectors
\renewcommand{\vec}[1]{\boldsymbol{#1}}
\newcommand{\unitvec}[1]{\boldsymbol{\hat{#1}}}
\begin{document}
\title{SPINS Lab 3 Tables}
\author{Quantum Mechanics}
\date{Fall 2019}
\maketitle
%\section*{Table templates}
\tabulinesep=4mm
{ \large Unknown state $\ket{\psi_1}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{1cm}
{ \large Unknown state $\ket{\psi_2}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{2cm}
{ \large Unknown state $\ket{\psi_3}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\vspace{1cm}
{ \large Unknown state $\ket{\psi_4}$}
\vspace{3mm}
\begin{tabu} to \linewidth { | X[c,-1] | X[c] | X[c] | X[c] | }
\hline
Probabilities & \multicolumn3{c|}{Axis} \\
\tabucline{1-1}
\everyrow{\hline}
Result & $x$ & $y$ & $z$ \\
$S_i=\hbar$ &&& \\
$S_i = 0$ &&& \\
$S_i = - \hbar$ &&& \\
\end{tabu}
\newpage
{ \large Spin 1 Interferometer}
\vspace{3mm}
\begin{tabu} to \linewidth {| X[c] | X[c] | X[c] | X[c] | X[c] | X[c] | X[c] |}
\hline
& \multicolumn3{c|}{Experiment} & \multicolumn3{c|}{Theory} \\
Beams & $\mathcal{P}_{+1}$ & $\mathcal{P}_0$ & $\mathcal{P}_{-1}$ & $\mathcal{P}_{+1}$ & $\mathcal{P}_0$ & $\mathcal{P}_{-1}$ \\
\hline
\everyrow{\hline}
$\ket{1}_x$ & &&&&& \\
$\ket{0}_x$ & &&&&& \\
$\ket{-1}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{0}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{-1}_x$ & &&&&& \\
$\ket{0}_x$, $\ket{-1}_x$ & &&&&& \\
$\ket{1}_x$, $\ket{0}_x$, $\ket{-1}_x$ & &&&&& \\
\end{tabu}
\end{document}