LaTeX Template for GMU Conferences
作者:
Sadettin Kursun
最近上传:
1 年前
许可:
Creative Commons CC BY 4.0
摘要:
LaTeX Template for GMU Conferences
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
% Copyright© Maia Japhoshvili
\documentclass[11pt]{book}
%%\textheight=21cm
%%\textwidth=16cm
%\voffset-15mm
%\hoffset-10mm
%%\oddsidemargin=0cm
%%\evensidemargin=0cm
\textwidth=165mm
\oddsidemargin=-4.4mm
\evensidemargin=4.4mm
\textheight=235mm
\topmargin=-5mm
\headheight=5.0mm
\headsep=6.6mm
\footskip=8.1mm
\usepackage{times,fancyhdr}
\usepackage{amssymb,amsbsy,exscale,times} %calrsfs,
\usepackage{amsmath,amssymb,amstext,amscd,amsfonts}
\usepackage{theorem,graphicx}
\usepackage{mathrsfs}
%\makeindex{E} %\makeindex{G}
\usepackage{color}
\usepackage{index}
\usepackage{verbatim}
\usepackage{url}
%\usepackage{fontspec}
%\usepackage{xunicode}
%\usepackage{xltxtra}
%\usepackage{graphicx}
%\usepackage{wrapfig}
%\usepackage{pictex,epsfig}
\makeindex
\raggedbottom
\begin{document}
\addcontentsline{toc}{section}{\textbf{name surname, name surname}, title of abstract \medskip}
\index{surname name}
\index{surname name}
\begin{center}
\textsf{\textbf{\Large Different Forms of Exponential Sampling Kantorovich Series and Their Approximation Results}} \\[0.5cm]
\textbf{\underline{Sadettin Kursun}$^{1}$} \\[0.2cm]
$^{1}$\textit{address (Department of Mathematics, Selçuk University, Konya, Türkiye)} \\[0.05cm]
\textit{E-mail:} \textsf{sadettinkursun@yahoo.com} \\[0.15cm]
\end{center}
\bigskip
In this presentation, we study different forms of exponential sampling Kantorovich-type series. We give approximation results of our operators in log-uniformly continuous function spaces and logarithmic weighted spaces of functions. Moreover, we present quantitative forms of Voronovskaja-type formula via Mellin-Taylor formula based on Mellin derivatives.
\subsection*{References}
\begin{enumerate}
\item[{[1]}] C. Bardaro, L. Faina, I. Mantellini, A generalization of the exponential sampling series and its approximation properties. \emph{Math. Slovaca} \textbf{67} (2017), no. 6, 1481-1489.
\vspace{-5pt}
\item[{[2]}] S. A. Kumar, S. Bajpeyi, Direct and inverse results for Kantorovich type exponential sampling series. \emph{Results Math.} \textbf{75} (2020), no. 3, Article Number:119
\vspace{-5pt}
\item[{[3]}] A. Aral, T. Acar, S. Kursun, Generalized Kantorovich forms of exponential sampling series. \emph{Anal. Math. Phys.} \textbf{12} (2022), no. 2, Article Number:50
\vspace{-5pt}
\item[{[4]}] S. Kursun, A. Aral, T. Acar, Approximation results for Hadamard-type exponential sampling Kantorovich series. \emph{ Mediterr. J. Math.} \textbf{20} (2023), no. 5, Article Number:263
\end{enumerate}
\end{document}