Simple Mathematical Induction
作者:
Ernest Michael Nelson
最近上传:
9 年前
许可:
Creative Commons CC BY 4.0
摘要:
This is a simple step by step on how to do mathematical induction.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\documentclass[article]{article}
\usepackage{amsmath,amsthm,bm,mathrsfs}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%% Title %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Simple Mathematical Induction}
\author{Ernest Michael Nelson}
\date{\today}
\maketitle
%%%%%%%%%%%%%%%%%%%%% End of title %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% Introduction %%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
With this paper we will establish formula by the use of mathematical induction. An it will be a step by step way to solve. An hopefully it will help out the reader
%%%%%%%%%%%%%%%%%%%% End of Introduction %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% Formula %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Formula}
We are given the formula
$$\sum_{n=1}^{\infty}i=\frac{n(n+1)}{2}, \forall n \geq1$$
And n is element of the positive integers.
%%%%%%%%%%%%%%%%%%%% End of Formula %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Proof %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Proof}
We began by running off a few tern to aid us in seeing a pattern emerge in the formula.
$$\sum_{n=1}^{\infty} 1+2+3+4+5+\cdot+n=\frac{n(n+1)}{2}$$
%%%%%%%%%%%%%%%%%%%% Initial Step %%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Initial Step}
Let's assume that n=1,
$$1=\frac{1(1+1)}{2}=1$$
$$1 = \frac{2}{2}=1$$
%%%%%%%%%%%%%%%%%%% End of Initial Step %%%%%%%%%%%%%%%%%%%%%%
Next we assume that n=k and k is an element of the positive integers. And we denote it as equation 1.
\begin{equation}\label{1}
\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k=\frac{k(k+1)}{2}
\end{equation}
$$\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k=\frac{k(k+1)}{2}$$
Now we do k+1 step and use equation 1 to help us solve the proof.
$$\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k+k+1=\frac{(k+1)((k+1)+1)}{2}$$
To aid us in seeing the proof we will simplify the right hand side (RHS) of the equation.
$$\sum_{k=1}^{\infty} 1+2+3+4+5+\cdots+k+k+1=\frac{(k+1)(k+2)}{2}$$
From \eqref{1} we will use in the Induction hypothesis t
o prove the formula.
$$\frac{k(k+1)}{2}+ k+1 =\frac{(k+1)(k+2)}{2}$$
The next step we do is find the greatest common factor (GCF) on the left hand side (LHS).
$$\frac{k(k+1)}{2}+\frac{2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$$
Now we can combine the (LHS) of the equation since we have the same denominator.
$$\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}$$
Next we factor the equation on the (LHS).
$$\frac{k^2+k+2k+2}{2}=\frac{(k+1)(k+2)}{2}$$
Combine like terms on the (LHS).
$$\frac{k^2+3k+2}{2}=\frac{(k+1)(k+2)}{2}$$
Final we factor the equation on the (LHS) and we will be done.
$$\frac{(k+1)(k+2)}{2}=\frac{(k+1)(k+2)}{2}$$
Thus we achieved what we desired>
%%%%%%%%%%%%%%%%%%%% End of Proof %%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}