Integration of Some Elementary Integrals
作者:
Adrian D'Costa
最近上传:
7 年前
许可:
Creative Commons CC BY 4.0
摘要:
Integration of some elementary integrals
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
Integration of some elementary integrals
\begin
Discover why 18 million people worldwide trust Overleaf with their work.
\documentclass[14pt]{extreport}
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage[colorinlistoftodos]{todonotes}
\title{Integration of Some Elementary Integrals}
\author{Adrian D'Costa}
\begin{document}
\maketitle
\subsection{1}
\begin{align*}&\int x\cos(ax)\,\,dx\\&\text{Let }u = x \therefore du = dx \text{ and } dv = \cos(ax)dx \therefore v = \frac{1}{a}\sin(ax)\\&=\frac{x\sin(ax)}{a}-\int \frac{1}{a}\sin{(ax)}\,\,dx\\&=\frac{x\sin(ax)}{a}+\frac{1}{a^2}\cos{(ax)}+C\end{align*}
\subsection{2}
\begin{align*}&\int\sin^{2}(x)\cos^{2}(x)\,\,dx\\&=\int (1 + \cos{(2x)} )( 1 - \cos{(2x)})\,\,dx\\&=\int ( 1 - \cos^{2}(2x))\,\,dx\\&=\frac{1}{2}\int (2-2\cos^{2}{(2x)}\,\,dx\\&=\frac{1}{2} \int (\cos{(4x)} +4)\,\,dx\\&=\frac{1}{32} (\sin{(4x)} +4x)\,\,dx + C\end{align*}
\subsection{3}
\begin{align*}&\int \frac{7x+1}{x^2 -x - 2}\,\,dx\\ &\frac{7x+1}{x^2-x-2} = \frac{7x+1} {(x-2) (x+1)}\\&7x+1 = \frac{A}{x-2} + \frac{B}{x+1}\\7x+1 &= Ax+A + Bx - 2B \\7x+1 &= (A+ B)x +(A - 2B)\\&\therefore A+ B = 7.....\text{(i)}\\&A- 2B = 1....\text{(ii)}\\&\text{subtracting equation (ii) from (i) gives}\Rightarrow 3B = 6\therefore B = 2\text{ and } A = 5\end{align*}
\begin{align*}\int \frac{7x+1}{x^2 -x - 2}\,\,dx &= \int \frac{5}{x-2}\,\,dx + \int \frac{2}{x+1}\,\,dx\\&=5\ln|x-2| + 2\ln|x+1|+C \end{align*}
\subsection{4}
\begin{align*}&\int \frac{1}{(x+1)^2}\,\,dx\\&\text{Let }u = x + 1 \therefore du = dx\\&=\int \frac{1}{u^2}\,\,du\\&= -u^{-1} + C \\&= -\frac{1}{(x + 1)} + C \end{align*}
\subsection{5}
\begin{align*}\int \sin^{6}(x)\cos^{3}(x)\,\,dx &= \int \sin^{6}(x)\cos^{2}(x)\cos(x)\,\,dx\\&= \int \sin^{6}(x) (1 - \sin^{2}(x))\cos(x)\,\,dx\\&= \int \sin^{6}(x)\cos(x)\,\,dx - \int \sin^{8}\cos(x)\,\,dx\\\text{Let } u = \sin(x) \therefore du = \cos(x)\\& \int u^6\,\,du - \int u^8\,\,du\\&= \frac{u^7}{7} -\frac{u^9}{9}+C\\&=\frac{\sin^{7}(x)}{7} - \frac{\sin^{9}(x)}{9} + C\end{align*}
\subsection{6}
\begin{align*}&\int \sin(\theta)\ln(\cos(\theta))\,\,d\theta\\&\text{Let } u = \ln(\cos(\theta))\therefore du = -\tan(\theta)\,\,d\theta\\&dv = \sin(\theta)\,\,d\theta \therefore v = -\cos(\theta)\end{align*}
\begin{align*}\int \sin(\theta)\ln(\cos(\theta)\,\,d\theta=& -\cos(\theta)\ln(\cos(\theta)) - \int \sin(\theta)d\theta\\&= -\cos(\theta)\ln(\cos(\theta)) + \cos(\theta)+ C\end{align*}
\subsection{7}
\begin{align*}&\int \sec^{4}(x)\tan^{3}(x)\,\,dx\\&= \int \sec^{3}(x) \tan^{2}(x) \sec(x) \tan(x)\,\,dx \\ &= \int \sec^{3}(x)(\sec^{2}(x) - 1)\sec(x)\tan(x)\,\,dx\\ &= \int \sec^{5}(x) \sec(x)\tan(x)\,\,dx - \int \sec^{3}(x) \sec(x)\tan(x)\,\,dx\\ &\text{Let } u = \sec(x) \therefore du = \sec(x)\tan(x)\,\,dx\\ &=\int u^{5}\,\,du - \int u^{3}\,\,du \\ &= \frac{u^{6}}{6} - \frac{u^{4}}{4} + C\\ &= \frac{\sec^{6}}{6} - \frac{\sec^{4}}{4} + C \end{align*}
\subsection{8}
\begin{align*}&\int xe^{5x}\,\,dx\\&\text{Let } u = x \therefore du = dx\\& \text{ and } dv = e^{5x} \therefore v = \frac{e^{5x}}{5}\\&\frac{xe^{5x}}{5} - \int \frac{e^{5x}}{5}\,\,dx\\=&\frac{xe^{5x}}{5} - \frac{e^{5x}}{25}+ C\end{align*}
\subsection{9}
\begin{align*}&\int\sec^{3}(\theta)\,\,d\theta\\&=\int \sec{(x)} \sec^{2}{(x)}\,\,dx\\&\text{Let } u = \sec{(x)} \therefore du = \sec{(x)}\tan{(x)}\,\,dx\text{ and } dv = \sec^{2}{(x)}\,\,dx \therefore v = \tan{(x)}\\&= \sec{(x)}\tan{(x)} - \int \sec{(x)}\tan^{2}{(x)}\,\,dx\\&=\sec{(x)}\tan{(x)} - \int \sec{(x)}(\sec^{2}{(x)} - 1)\,\,dx\\&= \sec{(x)}\tan{(x)} - \int \sec^{3}{(x)}\,\,dx + \int \sec{(x)}\,\,dx\\&=\frac{\sec{(x)}\tan{(x)}}{2} + \frac{\ln|\sec{(x)} + \tan{(x)}|}{2} + C \end{align*}
\subsection{10}
\begin{align*}&\int \tan^{3}(x)\sec^{4}(x)\,\,dx\\&=\int \sec{(x)}\tan{(x)}\sec^{3}{(x)}\tan^{2}(x)\,\,dx\\&= \int \sec^{5}{(x)} \sec{(x)}\tan{(x)}\,\,dx - \int \sec^{3}{(x)} \sec{(x)}\tan{(x)}\,\,dx \\&\text{Let } u = \sec{(x)}\,\, du = \sec{(x)}\tan{(x)}\,\,dx\\&=\int u^{5}\,\,du - \int u^{3}\,\,du\\&= \frac{u^{6}}{6} - \frac{u^{4}}{4} + C\\&= \frac{\sec^{6}{(x)}}{6} -\frac{\sec^{4}{(x)}}{4} + C\end{align*}
\subsection{11}
\begin{align*}&\text{Evaluate where } E \text{ is the region under the plane that lies in the first octant.}\\&\int_0^3\int_0^{\frac{-2x}{3}+2}\int_0^{6-2x-3y}2x\,\,dz\,\,dy\,\,dx\\=&\int_0^3\int_0^{\frac{-2x}{3}+2}2xz\Bigg]_0^{6-2x-3y}dy\,\,dx\\&=\int_0^3 \int_0^{\frac{-2x}{3}+2}2x(6-2x-3y)\,\,dy\,\,dx\\&=\int_0^3 \int_0^{\frac{-2x}{3}+2} (12x-4x^2-6xy)\,\,dy\,\,dx\\&=\int_0^3 (12xy - 4x^2y - 3xy^2)\Big]_0^{\frac{-2x}{3}+2}\,\,dx\\&=\int_0^3 \left(12x\frac{6-2x}{3}-4x^2\frac{6-2x}{3} -3x\frac{36-24x + 4x^2}{9} \right)\,\,dx\\&=\int_0^3 \left(\frac{36x(6-2x) - 12x^2(6-2x)-108x+72x^2 - 12x^3}{9}\right)\,\,dx\\&=\\&=\int_0^3\left(\frac{216x - 72x^{2} - 72x^2 + 24x^3 -108 x+72x^2 -12x^3}{9}\right)\,\,dx\\&=\int_0^3 \frac{-72x^{2} + 108x +12x^3}{9}\,\,dx\\&= \int_0^3 -8x^{2} + 12x + \frac{4x^3}{3}\\&=\Bigg[\frac{-8x^{3}}{3}+ 6x^2 + \frac{x^{4}}{3}\Bigg]_0^3\\&=9\end{align*}
\subsection{12}
$\displaystyle \text{Prove that } \frac{d(\sin^{-1}(x))}{dx}= \frac{1}{\sqrt{1-x^2}}$
Proof:
\begin{align*}&\text{Let } f(x) = \sin{(x)} \text{ and } g(x) = \sin^{-1}(x)\end{align*}
Then $g'(x) = \frac{1}{f'(g(x))}= \frac{1}{\cos{(\sin^{-1}(x))}}$
Let's $y = \sin^{-1}(x) \therefore x = \sin(y)$
Using this part of the definition:
$\cos(\sin^{-1}(x))=\cos(y)$
But we know that:
$\sin^{2}(y) + \cos^{2}(y) = 1 \therefore \cos{(y)} = \sqrt{1-\sin^{2}(y)} = \sqrt{1 - x^2}$
$\therefore \frac{d(\sin^{-1}(x))}{dx} = \frac{1}{\sqrt{1-x^2}}$
\subsection{13}
$\text{Prove that } \frac{d(\cos^{-1}(x))}{dx}= \frac{-1}{\sqrt{1-x^2}}$
Proof:
\begin{align*}&\text{Let } f(x) = \cos{(x)} \text{ and } g(x) = \cos^{-1}(x)\end{align*}
Then $g'(x) = \frac{1}{f'(g(x))}= \frac{-1}{\sin{(\cos^{-1}(x))}}$
Let's $y = \cos^{-1}(x) \therefore x = \cos(y)$
Using this part of the definition:
$\sin{(\cos^{-1}(x))}=\sin{(y)}$
But we know that:
$\sin^{2}(y) + \cos^{2}(y) = 1 \therefore \sin{(y)} = \sqrt{1-\cos^{2}(y)} = \sqrt{1 - x^2}$
$\therefore \frac{d(\cos^{-1}(x))}{dx} = \frac{-1}{\sqrt{1-x^2}}$
\end{document}