Template For Fine Focus

First Author^{1*} and Second Author²

¹Address of first author ²Address of second author

KEYWORDS

Keyword1, Keyword2, Keyword3

CORRESPONDING AUTHOR

First author author@university.edu

ABSTRACT

Please provide an abstract of no more than 300 words. Your abstract should explain the main contributions of your article, and should not contain any material that is not included in the main text.

INTRODUCTION

Thanks for using Overleaf to write your article. Your introduction goes here! Some examples of commonly used commands and features are listed below, to help you get started.

METHODS AND MATERIALS

Guidelines can be included for standard research article sections, such as this one.

SOME LETEX EXAMPLES

Use section and subsection commands to organize your document. LATEX handles all the formatting and numbering automatically. Use ref and label commands for cross-references.

FIGURES AND TABLES

Use the table and tabular commands for basic tables — see Table 1, for example. You can upload a figure (JPEG, PNG or PDF)

using the project menu. To include it in your document, use the includegraphics command as in the code for Figure 1 below.

Figure 1: An example image of a frog.

Item	Quantity
Candles	4
Fork handles	?

Table 1: An example table.

CITATIONS

LaTeX formats citations and references automatically using the bibliography records in your .bib file, which you can edit via the project menu. Use the cite command for an inline citation, like [1], and the citep

command for a citation in parentheses [1].

MATHEMATICS

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

LISTS

You can make lists with automatic numbering ...

- 1. Like this,
- 2. and like this.

... or bullet points ...

- Like this,
- and like this.

...or with words and descriptions ...

Word Definition Concept Explanation Idea Text

ACKNOWLEDGMENTS

Additional information can be given in the template, such as to not include funder information in the acknowledgments section.

REFERENCES

[1] John Lees-Miller, John Hammersley, and R Wilson. Theoretical maximum capacity as benchmark for empty vehicle redistribution in personal rapid transit. Transportation Research Record: Journal of the Transportation Research Board, (2146):76–83, 2010.