THE UNIVERSITY of EDINBURGH
School of Engineering

CODE12345 Course Title - Month Year (Diet)

This exam paper consists of THREE sections
Candidates should attempt ALL FIVE questions
Candidates should answer exam sections in separate books
A formula sheet is included at the end of the paper

Notes for the ETO

This is a temporary cover page, please replace it
This exam is 95 marks in total and has FIVE questions
Candidates should attempt ALL FIVE questions
This is a CLOSED-book exam
Use of calculators approved by the College of Science and Engineering is permitted

SECTION A

Question A1

One of these things is not like the others; one of these things is not the same. Which one is different?JohnPaulGeorgeRingoSocrates

Question A2

And this is a completely new multiple choice questions. Which of these options is Red?BlueRedishYellowWhiteRed

Question A3

And this is a completely new multiple choice questions. Which of these options is longer?Some long text can go hereRedAnd the text here can be even longer if you want, you can even add equations such as $F=m a$.WhiteBlue

SECTION B

Question B1

Write the main text for the question here. This is an example of an inline equation: $F=m a$, where F is the force, or $E=\frac{1}{2} m v^{2}$. For SI units use: the force is $F=1.0 \mathrm{~N}$ or $F=2.0 \mathrm{~N}$ and the velocity is $v=3.4 \mathrm{~m} / \mathrm{s}$. To add a table to the questions use:

Table B1: This is the caption for this table.

Item		
Property	Value	Units
Force	1.0	N
Acceleration	3.4	$\mathrm{~m} / \mathrm{s}^{2}$
Temperature	-250	K
Energy	200	J
Potatoes	Frozen	Count

With this version of the exam paper template it is also possible to add chemical symbols such as $\mathrm{H}_{2} \mathrm{O}$ or displayed chemical symbols or reactions, such as

$$
x \mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} \xrightarrow{\Delta}\left(\mathrm{NaPO}_{3}\right)_{x}+x \mathrm{NH}_{3} \uparrow+x \mathrm{H}_{2} \mathrm{O}
$$

(a) This is the text of a part of a question, with a reference to figure B1 below ...
i) This is a subpart of a question
ii) And this is another subpart of a question, another subpart of a question. And this is another subpart of a question. And this is another subpart of a question. And this is another subpart of a question.
(b) This is the text of a part of a question ...
(c) This is the text of a part of a question ...

Figure B1: This is the caption for this question.

Question B2

Write the main text for the question here ..
(a) This is the text of a part of a question ...
(b) This is the text of a part of a question ...
(c) This is the text of a part of a question ...
(d) This is the text of a part of a question ...

Figure B2: This is the caption for this question.

SECTION C
 Question C1

Write the main text for the question here ..
(a) This is the text of a part of a question ...
(b) This is the text of a part of a question ...
(c) This is the text of a part of a question...
(d) This is the text of a part of a question ...

Question C2

Write the main text for the question here ..
(a) This is the text of a part of a question ...
(b) This is the text of a part of a question ...
(c) This is the text of a part of a question ...
(d) This is the text of a part of a question ...

Figure C2: This is the caption for this question.

Formula Sheet

Course Title (CODE12345)
Month Year (Diet)

Title of group of formulas

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} \\
& T=\frac{1}{2} m \dot{x}^{2} \\
& T=\frac{1}{2} l \dot{\varphi}^{2} \\
& V_{\mathrm{e}}=\frac{1}{2} k \Delta x^{2} \\
& V_{\mathrm{e}}=\frac{1}{2} k_{\mathrm{t}} \Delta \alpha^{2}, \quad k_{\mathrm{t}}=\frac{G \pi d^{4}}{32 L} \\
& V_{\mathrm{g}}=m g h \\
& \delta W_{i}=Q_{i} \delta q_{i}
\end{aligned}
$$

Analytical dynamics

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} \\
& T=\frac{\rho A}{2} \int_{0}^{L}\left(\frac{\partial w}{\partial t}\right)^{2} \mathrm{~d} x \\
& V_{\mathrm{e}}=\frac{E I}{2} \int_{0}^{L}\left(\frac{\partial^{2} w}{\partial x^{2}}\right)^{2} \mathrm{~d} x \\
& V_{\mathrm{g}}=\rho A g \int_{0}^{L} w(x, t) \mathrm{d} x \\
& Q_{i}=\varphi_{i}(b) F \\
& Q_{i}(t)=\int_{0}^{L} \varphi_{i}(x) f(x, t) \mathrm{d} x
\end{aligned}
$$

Longitudinal waves

$$
\begin{aligned}
& \frac{\partial^{2} \Phi}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} \Phi}{\partial x^{2}}\right) \\
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{E}{\rho}\left(\frac{\partial^{2} u}{\partial x^{2}}\right) \\
& \frac{\partial^{2} w}{\partial t^{2}}=\frac{T}{\mu}\left(\frac{\partial^{2} w}{\partial x^{2}}\right) \\
& \frac{\partial^{2} \theta}{\partial t^{2}}=\frac{G}{\rho}\left(\frac{\partial^{2} \theta}{\partial x^{2}}\right) \\
& u(x, t)=f(x) g(t)
\end{aligned}
$$

Transverse waves

$$
\begin{aligned}
& \frac{\partial^{2} w}{\partial t^{2}}+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{E I}{\rho A} \frac{\partial^{2} w}{\partial x^{2}}\right)=0 \\
& \rho A \frac{\partial^{2} w}{\partial t^{2}}+E \prime \frac{\partial^{4} w}{\partial x^{4}}=0 \\
& w(x, t)=B \sin \left[\frac{2 \pi}{\lambda}(x-c t)\right] \\
& w(x, t)=\phi(x) \cos (\omega t) \\
& \frac{\partial^{4} \phi(x)}{\partial x^{4}}-k^{4} \phi(x)=0 \\
& w=\frac{2 \pi c}{\lambda}, \quad f=\frac{c}{\lambda} \\
& k^{4}=\frac{\rho A \omega^{2}}{E I}, \quad k=\frac{\omega}{c}
\end{aligned}
$$

Chemical reactions

$$
\begin{gathered}
x \mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} \xrightarrow{\Delta}\left(\mathrm{NaPO}_{3}\right)_{x}+x \mathrm{NH}_{3} \uparrow+x \mathrm{H}_{2} \mathrm{O} \\
\mathrm{SO}_{4}{ }^{2-}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaSO}_{4} \downarrow
\end{gathered}
$$

Tables and data

Item		
Property	Value	Units
Force	1.0	N
Acceleration	3.4	$\mathrm{~m} / \mathrm{s}^{2}$
Temperature	-250	K
Energy	200	J
Potatoes	Frozen	Count

