

# Laboratoire d'Électrotechnique et d'Électronique de Puissance de Lille 

author1, author2, author3, author4
2023


## Frame title 1

## L2EP 2023

## Theorem

There is no largest prime number.
1 Suppose $p$ were the largest prime number.

4 But $q+1$ is greater than 1 , thus divisible by some prime number not in the first $p$ numbers.

## Frame title 1

## L2EP 2023

## Theorem <br> There is no largest prime number.

1 Suppose $p$ were the largest prime number.
2 Let $q$ be the product of the first $p$ numbers.

4 But $q+1$ is greater than 1 , thus divisible by some prime number not in the first $p$ numbers.

## Frame title 1

## L2EP 2023

## Theorem <br> There is no largest prime number.

1 Suppose $p$ were the largest prime number.
2 Let $q$ be the product of the first $p$ numbers.
3 Then $q+1$ is not divisible by any of them.
4 But $q+1$ is greater than 1 , thus divisible by some prime number not in the first $p$ numbers.

## Frame title 2

Frame subtitle 2

- one
- two


## Conclusion

$[1,2,3]$
[1] D.C. Jiles and D.L. Atherton. "Theory of ferromagnetic hysteresis". In: J. Appl. Phys. (1984).
[2] G. Bertotti. Hysteresis in Magnetism. 1998. ISBN: 978-0-12-093270-2.
[3] C.P. Steinmetz. "On the law of hysteresis". In: Proc. IEEE vol. 72, no. 2 (1984).

