Your Project Title

Estd. 1864
FORMAN CHRISTIAN COLLEGE
(A Chartered Ussversty)

Jane Smith John Doe John Snow
12-34567 34-56789 56-78901

Submitted in partial satisfaction of the requirements for the

degree of

BSc (Hons) Computer Science
Department of Computer Science

Forman Christian College (A Chartered University)

Primary Advisor: Prof. ABCD
2021

COMP97

A blank page

This is an optional page environment you could use for things like:

Your own custom preamble chapters (use \chapterTitle for titles!)

o “This work is dedicated to...”
e A copyright notice

« Additional notes

e Quotes

o List of publications

e An actual blank page

» Nomenclature / glossaries, etc.

It is not recommended to use this in your undergraduate thesis for submission. It
has been left in here to make you aware of its existence. This is largely because it
does not follow the guidelines set out for undergraduate theses, but you could include
this environment for your own personal printed copy. Consult with your supervisor

to see if you can use it.

In addition, you can pass an optional parameter to this environment with the value
c to centre this text vertically on the page (use the center environment to align

horizontally).

Jane Smith John Doe John Snow i

Acknowledgements

Firstly, I want to thank somebody, and somebody else[l] Here is another note.

1Here is a footnote

ii

Abstract

This is where your abstract will go. Usually this is written last, after writing the

entirety of your thesis.

<Despite the fact that an abstract is quite brief, it must do almost as much work as
the multi-page paper that follows it. This means that it should in most cases include
the following sections. Each section is typically a single sentence, although there is
room for creativity. In particular, the parts may be merged or spread among a set
of sentences. Use the following as a checklist for your abstract but do not write any

headings in this abstract:

Motivation: Why do we care about the problem and the results? If the problem
isn’t obviously "interesting" it might be better to put motivation first; but if your
work is incremental progress on a problem that is widely recognized as important,
then it is probably better to put the problem statement first to indicate which piece
of the larger problem you are breaking off to work on. This section should include
the importance of your work, the difficulty of the area, and the impact it might
have if successful. Problem statement: What problem are you trying to solve?
What is the scope of your work (a generalized approach, or for a specific situation)?
Be careful not to use too much jargon. In some cases it is appropriate to put the
problem statement before the motivation, but usually this only works if most readers
already understand why the problem is important. Approach: How did you go about
solving or making progress on the problem? Did you use simulation, analytic models,
prototype construction, or analysis of field data for an actual product? What was
the extent of your work (did you look at one application program or a hundred

programs in twenty different programming languages?) What important variables

iii

COMP97

did you control, ignore, or measure? Results: What’s the answer? Specifically, most
good computer papers conclude that something is so many percent faster, cheaper,
smaller, or otherwise better than something else. Put the result there, in numbers.
Avoid vague, hand-waving results such as "very"', "small", or "significant." If you
must be vague, you are only given license to do so when you can talk about orders-
of-magnitude improvement. There is a tension here in that you should not provide
numbers that can be easily misinterpreted, but on the other hand you don’t have
room for all the caveats. Conclusions: What are the implications of your answer?
Is it going to change the world (unlikely), be a significant "win", be a nice hack, or
simply serve as a road sign indicating that this path is a waste of time (all of the
previous results are useful). Are your results general, potentially generalizable or

specific to a particular case? >

Jane Smith John Doe John Snow iv

Table of Contents

(1 How to use this template] 1
(1.1 Cautionary Note| 1
(1.2 Template Structure] 2
(.3 Table of Tables (ToT) and Table of Figures (ToF) 2
(1.4 Typesetting Mathl 3
(1.5 Hmm, the margins seem big? Especially on the lett of the page?| . . . 4

[2__Introductionl 5
2.1 Background|o 5
[2.2 Objectives|)
2.3 Problem Statement|o oo 5
2.4 SCOPE 6

[3 Requirements Analysis| 7
[3.1 Ludography| 7
(3.2 [iterature Reviewl o oo 8
3.3 User Classes and Characteristics 8
[3.4 Design and Implementation Constraints|. 9
[3.5 Assumptions and Dependencies| 9
[3.6 Functional Requirements| 9

3.6.1 Nameoft Use-Case 1| 10
3.6.2 Name of Use-Case 2 10
[3.7 Use Case Diagram| 10
[3.8 Nonfunctional Requirements| 10
[3.8.1 Performance Requirements|. 10
[3.8.2 Safety Requirements| 11
[3.8.3 Security Requirements| 11
[3.8.4 Additional Software Quality Attributes| 11
[3.9 Other Requirements| 11

[4 System Design|

[4.1 Application and Data Architecture

[4.2 Component Interactions and Collaborations|

[4.3 System Architecture]

[4.5 Component-External Entities Intertace]

4.6 Screenshots/Prototype]|

[> Test Specification and Results|

[>.1 Test Case Specification|

[5.2 Summary of Test Results|

6 Conclusion and Future Work|

[6.1 Project summary|

6.3 Future workl

[Appendix A

Some random python code

[Appendix B

(Glossary|

[Appendix C

Deployment /Installation Guide|

[Appendix D

User Manual|

[Appendix E

Student Information Sheet|

[Appendix F

Plagiarism Free Certificate

[Appendix G

Plagiarism Report|

Jane Smith

John Doe

John Snow

[4.7 Other Design Details|

COMP97

15

.............. 15
.............. 15

17

.............. 17
.............. 17
.............. 17

20

22

23

24

25

26

27

TABLE OF CONTENTS vi

List of Figures

(1.1 FCCU’s logo, used in the title page of this thesis.|

vii

List of Tables

(1.1 A list of house plants and their details.| 3
BITUCT . . .o 10
BT TC . .o o 15
[.2 Summary of all test results|. 16

viii

Chapter 1

How to use this template

Thank you for using the Official FCCU Computer Science Undergraduate Thesis
template! This template was originally authored by Benjamin Williams of University

of Lincoln. If you have any troubles, requests, or issues please get in touch with

‘mumtazsheikh@fccollege.edu.pkL

1.1 Cautionary Note

It is worth noting that:

1. This template should provide all of the required formatting for your under-

graduate thesis, as required by the module;

2. Provides auxillary environments for typesetting ease — such as ludography and

in-built features of IXTEX, and;

3. Formats references automatically in accordance with Harvard referencing, a

requirement for the FCCU’s DCS undergraduate dissertations.

This is your introductory chapter. The template is pre-formatted in accordance
to the Department of Computer Science’s undergraduate thesis requirements. For

example, this is double-spaced with the correct margin values and header formats.

1.2 Template Structure

Over on the left of this screen (assuming you're in Overleaf), you should see the file
structure of this template. There are a few folders and files which are important. In
this template, the chapters folder is where all the chapters throughout the document
are located. This includes other sections, such as the abstract, acknowledgements

and appendices.

By contrast, the preamble folder contains files which are used before the document
is rendered. Think of this like the head tag in HTML: the files in this folder provide
important meta-data (such as your name, student number etc) prior to the document
being rendered. Your first task should be to modify this template, by opening up
preamble/details.tex and inserting your own details. If you wish to use a package
in your document, you can easily add it to the preamble/packages.tex file, and it
will be imported. Furthermore, the preamble/bib-setup.tex file is used to import

references and set-up BibIXTEX, but that is covered later in this document.

1.3 Table of Tables (ToT) and Table of Figures
(ToF)

At the beginning of this document, you probably noticed these two sections which
were included before this chapter, and after the abstract. These are the table of
figures and the table of tables. Lets include an image, and notice how it appears in

the table of figures above as Figure [1.1]

e
FORMAN CHRISTIAN COLLEGE
' e S

Figure 1.1: FCCU'’s logo, used in the title page of this thesis.

In addition, here is an example of a table. Whilst not strictly required, it is worth

How to use this template 2

noting that Table (on the next page) is formatted in accordance to normal usage in
scientific articles. If you wish to create tables, it’s probably best to use a XTEX tables

generator, like http://tablesgenerator.com/.

Table 1.1: A list of house plants and their details.

Name ‘ Type ‘ Location ‘ Size

Billy Peace Lily Living room, on bookshelf | Massive!
Jezza Calathea Living room, on fireplace | Fairly big
Juno Laurel Bush | Kitchen Window Fairly big
Jade Jade Plant | Bathroom Window Mediumish
Bernard IT | Ivy Kitchen Window Big
Shelley Geranium Bedroom Window Small
Benth Kalanchoe Desktop Big

1.4 Typesetting Math

As computer scientists, we often need to describe things with mathematical sym-
bols or operators. Luckily, mathematical typesetting is part and parcel of BTEX,
with many solutions to this problem. This template uses the amsmath package for
mathematical typesetting, alongside the amssymb package. For example, you can use

in-line math formatting (with single dollars) like this:

For each p € P, the weight w = (pg-p2) — p1 was calculated. This linear

operation had a time complexity of O(n).

Double dollars will centre your math without an equation number, like so:

fa)= [feemag

And finally the align environment will allow to reference and align equations, like

in Equation [I.T] and [I.2] below. Notice how both = symbols are aligned horizontally.

How to use this template 3

http://tablesgenerator.com/

a=b+1 (1.1)

R, ov
5 VU V()W = i (1.2)

But what if you want to align two or more equations but have no equation numbers?

Well, thats a job for the align* environment:

d(a,b) = \/(a — bo)? + (a1 — b1)? + ... + (a, — b,)?

= Zn(az — bl)Q

=0

= |la —b]]
=/(a—b) (a—b)

1.5 Hmm, the margins seem big? Especially on
the left of the page?

Yeah, that’s okay. This is done by design as your thesis will be printed and bound
on one side, so you need extra room on the left so the text doesn’t fall into the bind

on your page.

The margins used in this template are the standards for postgraduate research theses,
which are also applicable for undergraduate theses too. The reason for the large
margins and big spacing is so those marking your work can write in notes and red-

pen your thesis easily. So yeah, don’t worry about it!

How to use this template 4

Chapter 2

Introduction

2.1 Background

<You are required to write a brief introduction of your project and provide back-
ground. In this section you should provide the context and initial knowledge of the
domain. You should also highlight the significance of problem and provide motiva-

tion behind the work being done.

This complete section should be an improved version of the introduction provided
in previous phases of the project. It is expected that there will be complete details

available at this stage to provide in this section>

2.2 Objectives

<Objectives are the final results that were to be achieved after the completion of

your project. List all of them here.>

2.3 Problem Statement

<Provide a short description of the software being specified. State the problem
solved. Convert your language from future to past/present since the project is now
complete. Also state whether your system is a program that applies certain al-

gorithms to some application, a tool that is end product of a research, a dataset,

a simulator developed as a result of research, an animated movie developed using
graphics techniques, a system that achieves better performance than its competitors,

or a software package that is useful in certain application etc.>

2.4 Scope

< Describe the scope of the product that is covered.>

Introduction 6

Chapter 3

Requirements Analysis

Another cool thing about KIEX is its referencing system. This template is set up
to use harvard-style referencing. You can do this by using \citep{citekey}. It
will print out something like this: (Aad et al., 2012). Or alternatively, you can use
\cite{citekey} to cite things like this: Chatrchyan et al., 2012 This template
uses BibIXTEX for referencing, with a Biber backend. This is primarily due to the
extensive features BibIATEX provides, along with the option of glossaries. If you want
to customise the referencing style, you can either modify the template slightly to use
different options, or use \usepackage again to reimport it. There’s probably some

commands to change its options after its been imported too.

3.1 Ludography

This thesis template also contains an optional ludography. This is primarily for
Games Development students, who wish to cite games in their thesis. To use this,
just put references into your bib file as usual with the game’s details. Then, make
sure keywords is set to {game}. This is what is used to determine which refer-
ences are games, and which are actual papers. For a more elaborate example, see

bib/ludography.bib.

Also, make sure that the title key is actually the author of the game, and the author
is the title of the game. The reason this is swapped around is because BibIATEX likes
to print references out with the author first. Then, just add \printLudography

with an optional title argument to print out all citations like \printLudography or

\printLudography [Games].

You can also use the ludography environment if you wish to print out some text
before the list of games is printed. An example of this can be seen in main.tex. To
cite games, you can \cite it like any other reference. However, if you want it to
display the title instead of the standard referencing style, you can use \citeGame

instead.

Here is an example of a cited game with a normal reference style: Space Invaders,
1978. Ugh, pretty ugly. Instead, here the two are cited in the next sentence as games
with \citeGame. Both Space Invaders and Breakout were games made by Atari.

Much better!

3.2 Literature Review

<Provide an overview to the projects background knowledge without too much in
detail (stick to the scope of the project). The background can refer to previous work
referenced from journals, articles, newspapers, or any academic literature providing
evidence that the proposed problem is significant and real problem worth solving.
If available, provide closely related work done within the project scope and the
challenges or defects identified which can be considered as part of the new solution.

Describe why you worked on this project in light of the literature review?>

3.3 User Classes and Characteristics

<Describe the various user classes that you have identified. Describe the pertinent
characteristics of each user class. Certain requirements may pertain only to certain
user classes. Distinguish the favored user classes from those who are less important

to satisty.>

Requirements Analysis 8

3.4 Design and Implementation Constraints

<Describe any items or issues that limit the options available to the developers.
These might include: corporate or regulatory policies; hardware limitations (timing
requirements, memory requirements); interfaces to other applications; specific tech-
nologies, tools, and databases to be used; parallel operations; language requirements;
communications protocols; security considerations; design conventions or program-
ming standards (for example, if the customer’s organization will be responsible for

maintaining the delivered software).>

3.5 Assumptions and Dependencies

<List any assumed factors (as opposed to known facts) that affect the requirements
stated in the document. These could include third-party or commercial components
that you plan to use, issues around the development or operating environment, or
constraints. The project could be affected if these assumptions are incorrect, are
not shared, or change. Also identify any dependencies the project has on external
factors, such as software components that you intend to reuse from another project,
unless they are already documented elsewhere (for example, in the vision and scope

document or the project plan).>

3.6 Functional Requirements

<All functional requirements are expressed as use-cases. Fill out the following tem-
plate for each use-case. Don’t really say “Use-Case 1.” State the use-case name in
just a few words e.g. “Withdraw Cash from ATM”. A use-case may have multiple

alternate courses of action.>

Requirements Analysis 9

Table 3.1: UC-1

Identifier UC-1
Purpose
Priority <Choose one from {High, Medium, Low}>

Pre-conditions

Post-conditions | ...

Typical Course of Action

S+# Actor Action System Response
1
2
3

Alternate Course of Action

[\

3.6.1 Name of Use-Case 1

3.6.2 Name of Use-Case 2

3.7 Use Case Diagram

<Provide the use case diagram>

3.8 Nonfunctional Requirements

3.8.1 Performance Requirements

<If there are performance requirements for the product under various circumstances,
state them here and explain their rationale, to help the developers understand the
intent and make suitable design choices. Specify the timing relationships for real
time systems. Make such requirements as specific as possible. You may need to

state performance requirements for individual functional requirements or features.>

Requirements Analysis 10

3.8.2 Safety Requirements

<Specify those requirements that are concerned with possible loss, damage, or harm
that could result from the use of the product. Define any safeguards or actions that
must be taken, as well as actions that must be prevented. Refer to any external
policies or regulations that state safety issues that affect the product’s design or use.

Define any safety certifications that must be satisfied.>

3.8.3 Security Requirements

<Specify any requirements regarding security or privacy issues surrounding use of
the product or protection of the data used or created by the product. Define any user
identity authentication requirements. Refer to any external policies or regulations
containing security issues that affect the product. Define any security or privacy

certifications that must be satisfied.>

3.8.4 Additional Software Quality Attributes

<Specify any additional quality characteristics for the product that are important to
either the customers or the developers. Some to consider are: adaptability, availab-
ility, correctness, flexibility, interoperability, maintainability, portability, reliability,
reusability, robustness, testability, and usability. Write these to be specific, quantit-
ative, and verifiable when possible. At the least, clarify the relative preferences for

various attributes, such as ease of use over ease of learning.>

3.9 Other Requirements

<Define any other requirements not covered elsewhere in the document. These
might include database requirements, external (hardware, software, or communica-
tion) interface requirements, internationalization requirements, legal requirements,

and reuse objectives for the project.>

Requirements Analysis 11

Chapter 4

System Design

4.1 Application and Data Architecture

< Complete logical or physical model is expected. Diagrams/Tools that may be
provided in this section include Component Diagram, ER Diagram, Class Diagram
(with complete inheritance, composition, and association details), Activity Diagram,
Decision Table etc. All these diagrams should have more details than the details
provided in Phase 1 of the SDP. Research based projects may provide complete

design of the proposed system. Describe each diagram briefly.>

4.2 Component Interactions and Collaborations

<Provide interactions and collaborations between your system components/processing
units. Diagrams/Tools that may be provided in this section include Design Level
Sequence Diagram, Collaboration Diagram, Event Traces, Detailed DFD, Activity
Diagram etc. All these diagrams should have more details than the details provided

in Phase 1 of the SDP. Describe each diagram briefly.>

4.3 System Architecture

<Provide the technical architecture of your system. Include a high-level architecture

diagram that highlights major subsystems and components.>

12

4.4 Architecture Evaluation

<Describe the reason(s) behind the decision related to selection of infrastructure/technology
used. Discuss pros and cons of the selected technology/infrastructure and the al-
ternative technology /infrastructure. For example why have your group selected a
particular API from a list of APIs? Why have your group preferred a particular

framework over an alternative framework.>

4.5 Component-External Entities Interface

< Express the communication between components of your system and components
of other systems such as NADRA system, bank, credit card verification system, third
party multi game server etc. Use appropriate diagram to show the interaction in a

better manner.>
4.6 Screenshots/Prototype

4.6.1 Workflow

<Describe complete workflow of your system. Swim-lane diagram may be used. This

section should be an improved version of the section presented in previous phases>

4.6.2 Screens

< Include all screenshots of your complete software application’s graphical user in-

terface.>

4.7 Other Design Details

<Describe all design details not covered in previous sections. Add subsections as
required. There can be details regarding Research Oriented, Game Oriented, or

Hardware based projects that have not been covered in this document before, those

System Design 13

details can be provided in this section. For example research based projects may use
this section to present their results and analysis; hardware based projects may use

this section to describe interface dependencies and issues etc.>

System Design 14

Chapter 5

Test Specification and Results

5.1 Test Case Specification

< Fill out the following template for each test case, also add any additional test
cases that were not part of Phase 3 or 4 document. Provide separate tables for input
data with each test case if applicable. Research based projects may need to replace

this test specification with their own test mechanism.>

Table 5.1: TC-1

Identifier TC-1

<Include use-case identifier(s) for functional
Related requirement(s) | requirement(s) and document section/sub-section
number(s) for other requirement(s).>

Short description
Pre-condition(s)
Input data
Detailed steps
Expected result(s)
Post-condition(s)
Actual result(s)
Test Case Result

5.2 Summary of Test Results

<Provide in tabular form the defects found in each of your software modules. For

example see Table 6.2 below.>

15

Table 5.2: Summary of all test results

No of
No of
Test cases No of defects defects
Module Name defects still need
run corrected
found to be
so far
corrected
Module 1
(e.g. Bill calculation | TC1, TC2,
module or speech
processing unit)
Module 2
Complete Svstem <Sum all of | <Sum all of | <Sum all of | <Sum all of
p y the above> | the above> | the above> | the above>

Test Specification and Results

16

Chapter 6

Conclusion and Future Work

6.1 Project summary

<Include a brief summary of how the proposed solution is going to/has addressed
the problem statement specified in the introduction section. Provide an overview of
what kind of evaluations were undertaken in order to prove that the solution really

solves the problem with evidence on results findings.>

6.2 Problems faced and lessons learned

<Provide the details of problems faced during one year of tenure to complete the
project. Problems can be technical, financial and motivational. List down all the

lesson learned. >

6.3 Future work

<Provide an overview of the recommendations and Include a future directions which

is required as part of the future work.>

17

References

Aad, Georges et al. (2012). ‘Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC’. In: Physics
Letters B 716.1, pp. 1-29 (cit. on p. [7).

Chatrchyan, Serguei et al. (2012). ‘Observation of a new boson at a mass of 125 GeV
with the CMS experiment at the LHC’. In: Physics Letters B 716.1, pp. 30-61

(cit. on p. [7)).

18

Ludography

Breakout (1976). Atari (cit. on p. [§).

Space Invaders (1978). Atari (cit. on p. [§).

19

Appendix A

Some random python code

This template includes the minted package, which allows you to import code and
syntax highlight it. For example, the text below is imported directly from the

code/test.py file using the \inputminted command:

str = "The times table";
print(str);
print(len(str) * "=");

for i in range(l, 13):
for j in range(l, 13):
print("%2d x %2d = %3d" % (i, j, i * j));
print("-" * 13);

And here is a snippet of Python with the minted environment:

Why don't you try running this?
See what it does? hm?

m=1[2,3, 0,1, 4171;

x = ['rmdq', 'd', 'n slk', 'odftp v)', 'hdk'];

c = ''.join(list(map(lambda y: chr(ord(y) ~ 5).upper() + ' ' if y
o =" 1"else ' ', " ' join([x[m[i]] for i, v in enumerate(x)
= 1))));

print ('%s\r\n%s\r\n/%s\r\n' 7 ('=' % len(c), c, '=' * len(c)));

20

Minted supports many, many languages — so you're not just limited to Python. For
example, here’s some random C++ code.

void CTimesTable::Print(const int number, const int upTo) const
{
for(int 1 = 1; i <= upTo; i++)
printf("%d x %d = %d\r\n", number, i, number * i);

Some random python code 21

Appendix B
Glossary

<Define all the terms necessary to properly interpret the document, including ac-
ronyms and abbreviations.>

22

Appendix C
Deployment /Installation Guide

<Provide a list of instructions such that users of your system can deploy and install
your system on their own>

23

Appendix D

User Manual

<Provide a manual such that users of your system can use your system after install-
ation. In business software applications, where groups of users have access to only a
sub-set of the application’s full functionality, a user guide may be prepared for each
group. There should be step by step instruction for each user class.>

24

Appendix E

Student Information Sheet

Roll No | Name | Email Address (FC College) | Frequently Personal
Checked Email | Cell

Appendix F

Plagiarism Free Certificate

This is to certify that, I am Your Name Here S/D/o Father’s Name Here, group
leader of FYP under registration no Your Registration No at Computer Science
Department, Forman Christian College (A Chartered University), Lahore. I declare
that my Final year project report is checked by my supervisor and the similarity
index is X% that is less than 20%, an acceptable limit by HEC. Report is attached
herewith as Appendix F. To the best of my knowledge and belief, the report contains
no material previously published or written by another person except where due
reference is made in the report itself.

Date: Date Here Name of Group Leader: Name Here

Signature:

Name of Supervisor: Supervisor Name Here
Designation: Designation here

Signature:

Co-Supervisor (if any): Co-supervisor name here
Designation: Designation here

Signature:

Senior Project Management Committee Representative:

Signature:

26

Appendix G
Plagiarism Report

27

	How to use this template
	Cautionary Note
	Template Structure
	Table of Tables (ToT) and Table of Figures (ToF)
	Typesetting Math
	Hmm, the margins seem big? Especially on the left of the page?

	Introduction
	Background
	Objectives
	Problem Statement
	Scope

	Requirements Analysis
	Ludography
	Literature Review
	User Classes and Characteristics
	Design and Implementation Constraints
	Assumptions and Dependencies
	Functional Requirements
	Name of Use-Case 1
	Name of Use-Case 2

	Use Case Diagram
	Nonfunctional Requirements
	Performance Requirements
	Safety Requirements
	Security Requirements
	Additional Software Quality Attributes

	Other Requirements

	System Design
	Application and Data Architecture
	Component Interactions and Collaborations
	System Architecture
	Architecture Evaluation
	Component-External Entities Interface
	Screenshots/Prototype
	Workflow
	Screens

	Other Design Details

	Test Specification and Results
	Test Case Specification
	Summary of Test Results

	Conclusion and Future Work
	Project summary
	Problems faced and lessons learned
	Future work

	Appendix Some random python code
	Appendix Glossary
	Appendix Deployment/Installation Guide
	Appendix User Manual
	Appendix Student Information Sheet
	Appendix Plagiarism Free Certificate
	Appendix Plagiarism Report

