Example Problem 1

Answer to the problem goes here. Use a line per sentence. Leave a blank space to start a new paragraph. Next, an example typesetting mathematics in $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$.
Showing that equation $a+b=\frac{c}{d}$ in evidence:

$$
\begin{equation*}
a+b=\frac{c}{d} \tag{1}
\end{equation*}
$$

Note that equation 1 was automatically numbered. If you prefer not numbered equations, see the next example.

Example Problem 2

Showing that $\neg(p \rightarrow q)$ and $p \wedge \neg q$ are logically equivalent.

$$
\begin{aligned}
\neg(p \rightarrow q) & \equiv \neg(\neg p \vee q) \\
& \equiv \neg(\neg p \vee q) \\
& \equiv \neg(\neg p) \wedge \neg(q) \\
& \equiv p \wedge \neg q
\end{aligned}
$$

Note that \& is where the equations align.

Example Problem 3

Constructing the Truth Table of $(p \rightarrow q) \wedge(\neg p \leftrightarrow q)$ in Table 1:

Table 1: Caption here. Leave it blank if you will not refer it.

p	q	$\neg p$	$p \rightarrow q$	$\neg p \leftrightarrow q$	$(p \rightarrow q) \wedge(\neg p \leftrightarrow q)$
T	T	F	T	F	F
T	F	F	F	T	F
F	T	T	T	T	T
F	F	T	T	F	F

Example Problem 4

a) "There is a student in Gryffindor who has taken all elective classes."

Solution:

$$
\exists x \forall y \forall z(H(x, \text { Gryffindor }) \wedge P(x, y))
$$

where

$$
H(x, z) \text { is " } x \text { is of } z \text { house" }
$$

$P(x, y)$ is " x has taken y,"
the domain for x consists of all students in Hogwarts
the domain for y consists of all elective classes,
and the domain for z consists of all Hogwarts houses.
b) Give a direct proof of the theorem "If n is an odd integer, then n^{2} is odd."

Solution:
1.

$$
\forall n(P(n) \rightarrow Q(n))
$$

where

$$
\begin{aligned}
& P(n) \text { is " } n \text { is an odd integer" and } \\
& Q(n) \text { is " } n \text { is odd." }
\end{aligned}
$$

2. Assume $P(n)$ is true.
3. By definition, an odd integer is $n=2 k+1$, where k is some integer.
4.

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

5. $\therefore n^{2}$ is an odd integer.
c) Let $A=\{1,2,3\}$ and $B=\{1,2,3,\{1,2,3\}\}$:

Then, $A \in B$ and $A \subseteq B$.
d) Let $A=\{1,3,5\}, B=\{1,2,3$,$\} , and universe U=\{1,2,3,4,5\}$:

$$
\begin{aligned}
A \cup B & =\{1,2,3,5\}, \\
A \cap B & =\{1,3\} \\
A-B & =\{5\} \\
\bar{A} & =\{2,4\}, \\
A-A & =\emptyset
\end{aligned}
$$

