Example Problem 1

Answer to the problem goes here. Use a line per sentence. Leave a blank space to start a new paragraph. Next, an example typesetting mathematics in $\text{LAT}_{\text{E}}X$.

Showing that equation $a + b = \frac{c}{d}$ in evidence:

$$a+b = \frac{c}{d} \tag{1}$$

Note that equation 1 was automatically numbered. If you prefer not numbered equations, see the next example.

Example Problem 2

Showing that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

$$\neg (p \to q) \equiv \neg (\neg p \lor q)$$
$$\equiv \neg (\neg p \lor q)$$
$$\equiv \neg (\neg p) \land \neg (q)$$
$$\equiv p \land \neg q$$

Note that & is where the equations align.

Example Problem 3

Constructing the Truth Table of $(p \to q) \land (\neg p \leftrightarrow q)$ in Table 1:

		L			
p	q	$\neg p$	$p \rightarrow q$	$\neg p \leftrightarrow q$	$(p \to q) \land (\neg p \leftrightarrow q)$
Т	Т	F	Т	F	F
Т	\mathbf{F}	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F

Table 1: Caption here. Leave it blank if you will not refer it.

Example Problem 4

a) "There is a student in Gryffindor who has taken all elective classes."

Solution:

 $\exists x \forall y \forall z (H(x, \operatorname{Gryffindor}) \land P(x, y))$

where

H(x, z) is "x is of z house"

P(x, y) is "x has taken y,"

the domain for x consists of all students in Hogwarts

the domain for y consists of all elective classes,

and the domain for z consists of all Hogwarts houses.

b) Give a direct proof of the theorem "If n is an odd integer, then n^2 is odd." Solution:

1.

$$\forall n(P(n) \to Q(n)),$$

where

P(n) is "*n* is an odd integer" and Q(n) is "*n*² is odd."

- 2. Assume P(n) is true.
- 3. By definition, an odd integer is n = 2k + 1, where k is some integer. 4.

$$n^{2} = (2k + 1)^{2}$$

= 4k^{2} + 4k + 1
= 2(2k^{2} + 2k) + 1

5. $\therefore n^2$ is an odd integer. \Box

- c) Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, \{1, 2, 3\}\}$: Then, $A \in B$ and $A \subseteq B$.
- d) Let $A = \{1, 3, 5\}, B = \{1, 2, 3, \}$, and universe $U = \{1, 2, 3, 4, 5\}$:

$$A \cup B = \{1, 2, 3, 5\},\$$

$$A \cap B = \{1, 3\},\$$

$$A - B = \{5\},\$$

$$\bar{A} = \{2, 4\},\$$

$$A - A = \emptyset.$$