Coursework template CO343

Firstname Lastname
CID 01234567

October 8, 2018

1 Problem 1

The problem states that we should find x that solves the following equation

$$
\begin{equation*}
2 x^{2}+4 x-6=0 \tag{1}
\end{equation*}
$$

We take the standard algorithm for solving equations of the form $a x^{2}+b x+c$ and apply it to Equation 1 . This gives us

$$
\begin{align*}
x & =\frac{2}{2 \cdot 2} \pm \sqrt{\left(\frac{2}{2 \cdot 2}\right)^{2}+\frac{6}{2}} \tag{2}\\
& =1 \pm 2 \tag{3}
\end{align*}
$$

So the solutions are $x=3$ and $x=-1$.
In Figure 1, we can see an example of a galaxy.

Figure 1: Example figure

2 Problem 2

Example of Simplex tableau:

$B V$	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	-8
x_{2}	0	0	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	5
x_{5}	0	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	1	1
x_{1}	0	1	0	$\frac{3}{5}$	$-\frac{1}{5}$	0	3

We can define the $\mathrm{LA} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ commands Tstrut and Bstrut to get more spacing between rows in the tableau and make it look nicer:

$B V$	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	-8
x_{2}	0	0	1	$-\frac{1}{5}$	$\frac{2}{5}$	0	5
x_{5}	0	0	0	$-\frac{3}{5}$	$\frac{1}{5}$	1	1
x_{1}	0	1	0	$\frac{3}{5}$	$-\frac{1}{5}$	0	3

We can colour text and highlight cells in tableau, or just leave them empty:

$B V$	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	$R H S$
z	1			$-\frac{2}{5}$	$-\frac{1}{5}$		-8
x_{2}			1	$-\frac{1}{5}$	$\frac{2}{5}$		5
x_{5}				$-\frac{3}{5}$	$\frac{1}{5}$	1	1
x_{1}		1		$\frac{3}{5}$	$-\frac{1}{5}$		3

Here is how you make vectors and matrices:

$$
\begin{gather*}
\mathbf{x}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]^{\top} \tag{7}\\
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{-1} \tag{8}
\end{gather*}
$$

Here is a formulation of a linear program:

$$
\begin{array}{cl}
\min _{x} & c^{\top} x \\
\text { s.t. } & A x \leq b \\
& -1 \leq x_{n} \leq 1, \quad n=1, \ldots, N
\end{array}
$$

There is an ocean of Latex questions and answers online. If you have a question, most likely someone else will have asked the same question before.

