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Abstract

The differential wave equation can be used to describe electromagnetic
waves in a vacuum. In the one dimensional case, this takes the form
∂2φ
∂x2

− 1
c2
∂2φ
∂t2

= 0. A general function f(x, t) = x± ct will propagate with
speed c. To represent the properties of electromagnetic waves, however,
the function φ(x, t) = φ0sin(kx−ωt) must be used. This gives the Electric
and Magnetic field equations to be E(z, t) = x̂E0sin(kz−ωt) andB(z, t) =
ŷB0sin(kz − ωt). Using this solution as well as Maxwell’s equations the
relation E0

B0
= c can be derived. In addition, the average rate of energy

transfer can be found to be S̄ =
E2

0
2cµ0

ẑ using the poynting vector of the
fields.

1 Introduction

In 1861 James Maxwell published a set of equations to describe electromag-
netism, which henceforth became known as Maxwell’s equations [1]. They are
as follows

1. ∇ · E = ρ
ε0

2. ∇ ·B = 0

3. ∇×B − µ0ε0
∂E
∂t = µ0J

4. ∇× E + ∂B
∂t = 0

These equations describe the generation and properties of Electric and Magnetic
fields. Applying these equations to the one dimensional wave equation reveals
that Maxwell’s equations can generate planes waves consisting of Electric and
Magnetic Fields.
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2 Solving the Wave Equation

2.1 Propagation Speed

The speed of light has been experimentally measured to a high degree of ac-
curacy, and thus any solution for the propagation of an electromagnetic wave
in a vacuum must propagate with speed c. If φ(x, t) is our waveform, then the
parameters x and t must sum in the form φ(x, t) = f(x±ct) in order to generate
a propagation speed of c. In order to track a point on f, the input value must
be held constant. Calling our point f(k) means that k = x± ct, so the x value
must change with speed c in order for the quantity k to remain constant. The
direction of the wave’s propagation is determined by the sign of ct, with nega-
tive resulting in a wave moving in the positive x direction and positive resulting
in a wave moving in the negative x direction

2.2 Wave Equation

[2] The function that satisfies both Maxwell’s equations and the one dimensional
wave equation is φ(x, t) = φ0sin(kx−ωt). To prove this, it is only necessary to
differentiate φ(x, t) twice with respect to x and t.

First Derivatives ∂φ
∂x = kφ0 cos(kx− ωt), ∂φ

∂t = −ωφ0 cos(kx− ωt)

Second Derivatives ∂2φ
∂x2 = −k2φ0 sin(kx− ωt), ∂2φ

∂t2 = −ω2φ0 sin(kx− ωt)
Using these in the wave equation results in the following:

k2φ sin(kx− ωt) =
ω2

c2
φ0 sin(kx− ωt)

Eliminating terms that appear on both sides results in:

k2 =
ω2

c2

Since the speed of a wave is given by v = ω
k and we know v = c, the equation

can be rewritten as k = ω
c . k2 is therefore ω2

c2 , so φ(x, t) = φ0sin(kx−ωt) solves
the wave equation.

2.3 Wave Properties

Having the solution be a sine wave entails certain properties. A sine wave
takes completes a cycle in 2π radians, so the angular frequency is related to the
frequency of the wave by f = ω

2π . Since the frequency is the inverse of the period
T = 2π

ω . The sine wave will also complete a cycle by holding time constant and
moving one full wavelength. Since this requires 2π radians, k must equal 2π

λ ,
where lambda is the wavelength.
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2.4 Energy Conservation

Since we are considering an electromagnetic wave propagating in a perfect vac-
uum, energy must be conserved. The energy density of an electric field is given

by [3] 1
2ε0E

2. The energy density of a magnetic field is given by [3] 1
2
B2

µ0
. Sum-

ming these gives Eden = 1
2ε0E

2 + 1
2
B2

µ0
. Substituting in our equation for both

the Electric and Magnetic fields yields

Eden =
1

2
ε0E

2
0 sin(kx− ωt)2 +

1

2

B2
0 sin(kx− ωt)2

µ0

Factoring out the sine portion gives

Eden = (
1

2
ε0E

2
0 +

1

2

B2
0

µ0
) sin(kx− ωt)2

Integrating over one wavelength (respect to x) gives

Eλ = (
1

2
ε0E

2
0 +

1

2

B2
0

µ0
)
λ

2

This result is not dependent on t, and thus energy is not being gained nor
lost over time.

2.5 Mathematical Basis

In order to prove that the wave equation satisfies Maxwell’s Equations, a proof
of the divergence of the curl and the curl of curl vector identities must be
established [4].

2.5.1 Divergence of the Curl

Divergence of the curl states that

∇ · (∇× F ) = 0. (1)

To prove this, we need only to expand the terms.

∇× F = î(
∂Fz
∂y
− ∂Fy

∂z
)− ĵ(∂Fz

∂x
− ∂Fx

∂z
) + k̂(

∂Fy
∂x
− ∂Fx

∂y
)

The dot product yields

∇ · (∇× F ) =
∂Fz
∂x∂y

− ∂Fy
∂x∂z

− ∂Fz
∂y∂x

+
∂Fx
∂y∂z

+
∂Fy
∂z∂x

− ∂Fx
∂z∂y

The terms can be rearranged to form

∇ · (∇× F ) = (
∂Fz
∂x∂y

− ∂Fz
∂y∂x

) + (
∂Fy
∂z∂x

− ∂Fy
∂x∂z

) + (
∂Fx
∂y∂z

− ∂Fx
∂z∂y

)
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as long as all partials are continuous and differentiable, all terms on the right
side cancel leaving

∇ · (∇× F ) = 0

2.5.2 Curl of the Curl

[5] The Curl of the Curl is

∇× (∇× F ) = −∇2F +∇(∇ · F ) (2)

To prove this, an expansion of terms is sufficient

∇× F = î(
∂Fz
∂y
− ∂Fy

∂z
)− ĵ(∂Fz

∂x
− ∂Fx

∂z
) + k̂(

∂Fy
∂x
− ∂Fx

∂y
)

∇× (∇× F ) =

î(
∂2Fy
∂y∂x

− ∂2Fx
∂y2

+
∂2Fz
∂z∂x

+
∂2Fx
∂z2

)

− ĵ(∂
2Fy
∂x2

− ∂2Fx
∂x∂y

− ∂2Fz
∂z∂y

− ∂2Fy
∂z2

)

+ k̂(−∂
2Fz
∂x2

+
∂2Fx
∂x∂z

− ∂2Fz
∂y2

− ∂2Fy
∂y∂z

)

Next week need to expand −∇2F +∇(∇ · F )
Starting with the term on the right we get

∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

Taking the gradient gives

∇(∇ · F ) =

î(
∂2Fx
∂x2

+
∂2Fy
∂x∂y

+
∂2Fz
∂x∂z

)+

î(
∂2Fx
∂y∂x

+
∂2Fy
∂y2

+
∂2Fz
∂y∂z

)+

î(
∂2Fx
∂z∂x

+
∂2Fy
∂z∂y

+
∂2Fz
∂z2

)

[6] The Vector Laplacian ∇2F is applied to each component of a vector,
yielding
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∇2F =

î(
∂2Fx
∂x2

+
∂2Fx
∂y2

+
∂2Fx
∂z2

)+

ĵ(
∂2Fy
∂x2

+
∂2Fy
∂y2

+
∂2Fy
∂z2

)+

k̂(
∂2Fz
∂x2

+
∂2Fz
∂y2

+
∂2Fz
∂z2

)

Subtracting these two equations gives the final result of

∇(∇ · F )−∇2F =

î(
∂2Fy
∂y∂x

− ∂2Fx
∂y2

+
∂2Fz
∂z∂x

− ∂2Fx
∂z2

)

+ ĵ(−∂
2Fy
∂x2

+
∂2Fx
∂x∂y

+
∂2Fz
∂z∂y

− ∂2Fy
∂z2

)

+ k̂(−∂
2Fz
∂x2

+
∂2Fx
∂x∂z

− ∂2Fz
∂y2

− ∂2Fy
∂y∂z

)

This is equivalent to the expression given for the cross product of the cross
product, so

∇× (∇× F ) = −∇2F +∇(∇ · F )

2.6 Satisfying Maxwell’s Equations

With the two previously proven identities, we can now show that the Wave
Equation satisfies Maxwell’s Equations.

2.6.1 Electric Field

[7] Starting with the Fourth equation we have

∇× E = −∂B
∂t

Using ∇× on both sides gives

∇× (∇× E) = −∂∇×B
∂t

From identity (2) we know ∇× (∇×E) = −∇2E+∇(∇·E) Since there are
no sources, ρ = 0 so the term ∇ · E = 0 from the first of Maxwell’s equations,
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making the term ∇(∇ · E) = 0. We are then left with

∇× (∇× E) = −∇2E

. We can rearrange Maxwell’s third equation to be

∇×B = µ0J + µ0ε0
∂E

∂t

since J is 0 in a vacuum, the equation becomes

∇×B = µ0ε0
∂E

∂t

Substituting both of these terms into the equation

∇× (∇× E) = −∂∇×B
∂t

and canceling the negative signs gives

∇2E = µ0ε0
∂2E

∂2t

Since this is the one dimensional case ∇2E = ∂2E
∂x2 which gives

∂2E

∂x2
= µ0ε0

∂2E

∂2t

which is the form of the wave equation. This also implies that µ0ε0 = 1
c2 , which

can be rearranged to give c = 1√
µ0ε0

.

2.6.2 Magnetic Field

Starting with the third of Maxwell’s equations, we have

∇×B − µ0ε0
∂E

∂t
= µ0J

Since J = 0 the equation becomes

∇×B − µ0ε0
∂E

∂t
= 0

Rearranging and applying ∇× to the equation yields

∇× (∇×B) = µ0ε0
∂∇× E
∂t

Identity (2) gives∇×(∇×B) = −∇2B+∇(∇·B). Maxwell’s second equation
says ∇ ·B = 0. Applying this to the identity gives ∇× (∇×B) = −∇2B.

6



From Maxwell’s fourth equation, we get ∇×E = −∂B∂t . Substituting these two
equations into our modified form of Maxwell’s third equation gives

∇2B = µ0ε0
∂2B

∂t2

Since this is the one dimensional case ∇2B is just ∂2B
∂x2 which gives us

∂2B

∂x2
= µ0ε0

∂2B

∂t2

This is the form of the wave equation and, like the electric field version,
implies that c = 1√

µ0ε0

2.7 Magnetic and Electric Field Waves

In the Wave Equation section we found ∂2φ
∂x2 − 1

c2
∂2φ
∂x2 = 0 was solved by φ(x, t) =

φ0sin(kx− ωt). Likewise, the Magnetic and Electric fields were shown to take

the form ∂2B
∂x2 = µ0ε0

∂2B
∂t2 and ∂2E

∂x2 = µ0ε0
∂2E
∂2t Which yields solutions B(z, t) =

ŷB0sin(kz − ωt) and E(z, t) = x̂E0sin(kz − ωt). We know the directions of
the E and B fields must be perpendicular in an electromagnetic wave, so the
directions x̂ and ŷ were assigned to give an orientation.

2.7.1 Relationship between E0 and B0

By examining Maxwell’s third equation, we can derive a relationship between
the values of E0 and B0. Maxwell’s third equation states

∇×B − µ0ε0
∂E

∂t
= µ0J

Taking the proper derivatives and curl we get

∇×B = −kîB0 cos(kz − ωt)
and

∂E

∂t
= −ωE0 cos(kz − ωt)k̂

Substituting these into Maxwell’s third equation and using J = 0 we obtain

ωµ0ε0 cos(kz − ωt)k̂ = kB0 cos(kz − ωt)k̂
Dividing out like terms yields

ωµ0ε0E0 = kB0

which can be rearranged to obtain

E0

B0
=

k

ωµ0ε0

It has been shown that ω = ck and that c = 1√
µ0ε0

so the equation can be

rewritten as
E0

B0
= c
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2.7.2 Poynting Vector

The Poynting Vector of an Electromagnetic wave is defined as

S =
1

µ0
E ×B

Carrying out the cross product yields

S =
E0B0 sin2(kz − ωt)

µ0
ẑ

Taking the average intensity of the wave over a period yields

S̄ =
E0B0

2µ0
ẑ

since we know the relationship between E0 and B0 to be E0

B0
= c the expression

can also be written as
S̄ =

E2
0

2cµ0
ẑ or S̄ =

B2
0c

2µ0
ẑ

3 Conclusion

It has been shown that the one dimensional wave equation can be used to
satisfy Maxwell’s equations for both the Electric and Magnetic fields, and that
this solution can be used to derive fundamental properties of an electromagnetic
waves. The equations for the Electric and Magnetic fields were computed to be
E(z, t) = x̂E0sin(kz−ωt) and B(z, t) = ŷB0sin(kz−ωt) respectively. This was
proved using Maxwell’s equations as well as the curl of the curl and divergence
of the curl vector identities. Using Maxwell’s third equation it was determined
that E0 and B0 were related by the equation E0

B0
= c. Furthermore, the poynting

vector of the two fields was used to determine the average rate of energy transfer

of the waves, which came out to be S̄ =
E2

0

2cµ0
ẑ. The one dimensional wave

equation can thus be seen as a useful representation of electromagnetic waves
propagating in a vacuum, and provides a basis for the properties of the wave.
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