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Abstract

The differential wave equation can be used to describe electromagnetic
waves in a vacuum. In the one dimensional case, this takes the form
% — C%g%’ = 0. A general function f(z,t) = x £ ¢t will propagate with
speed c. To represent the properties of electromagnetic waves, however,
the function ¢(z,t) = ¢osin(kxr—wt) must be used. This gives the Electric
and Magnetic field equations to be E(z,t) = £ Egsin(kz—wt) and B(z,t) =
JBosin(kz — wt). Using this solution as well as Maxwell’s equations the

relation g—g = c can be derived. In addition, the average rate of energy

— 2
;ransfer can be found to be S = 25302 using the poynting vector of the
elds.

1 Introduction

In 1861 James Maxwell published a set of equations to describe electromag-
netism, which henceforth became known as Maxwell’s equations [1]. They are
as follows

L.V-E=2
2.V-B=0

3. VxB—uoeo%—f:qu
4. VxE+98 =0

These equations describe the generation and properties of Electric and Magnetic
fields. Applying these equations to the one dimensional wave equation reveals
that Maxwell’s equations can generate planes waves consisting of Electric and
Magnetic Fields.



2 Solving the Wave Equation

2.1 Propagation Speed

The speed of light has been experimentally measured to a high degree of ac-
curacy, and thus any solution for the propagation of an electromagnetic wave
in a vacuum must propagate with speed c. If ¢(x,t) is our waveform, then the
parameters x and t must sum in the form ¢(z,t) = f(x+ct) in order to generate
a propagation speed of c. In order to track a point on f, the input value must
be held constant. Calling our point f(k) means that k = = & ct, so the x value
must change with speed ¢ in order for the quantity k to remain constant. The
direction of the wave’s propagation is determined by the sign of ct, with nega-
tive resulting in a wave moving in the positive x direction and positive resulting
in a wave moving in the negative x direction

2.2 Wave Equation

[2] The function that satisfies both Maxwell’s equations and the one dimensional
wave equation is ¢(z,t) = ¢gsin(kx —wt). To prove this, it is only necessary to
differentiate ¢(z,t) twice with respect to x and t.

First Derivatives % = k¢ cos(kx — wt), %‘f = —wao cos(kz — wt)
Second Derivatives % = —k2¢g sin(kx — wt), ‘?:Tf = —w?¢psin(kz — wt)

Using these in the wave equation results in the following:

2
k*¢sin(kr — wt) = %aﬁo sin(kx — wt)

Eliminating terms that appear on both sides results in:

k2fw7
=

Since the speed of a wave is given by v = ¢ and we know v = ¢, the equation

can be rewritten as k = £. k? is therefore ‘Z—;, so ¢(z,t) = ¢osin(kx —wt) solves
the wave equation.

2.3 Wave Properties

Having the solution be a sine wave entails certain properties. A sine wave
takes completes a cycle in 27 radians, so the angular frequency is related to the
frequency of the wave by f = 5=. Since the frequency is the inverse of the period
T= %’r The sine wave will also complete a cycle by holding time constant and
moving one full wavelength. Since this requires 27 radians, k must equal 27”,

where lambda is the wavelength.



2.4 Energy Conservation

Since we are considering an electromagnetic wave propagating in a perfect vac-
uum, energy must be conserved. The energy density of an electric field is given
by [3] 2€0E2. The energy density of a magnetic field is given by [3] %f—j Sum-
1 B2

ming these gives Fge,, = %E()EZ + . Substituting in our equation for both

the Electric and Magnetic fields yields0

1 1 B2sin(kr — wt)?
Egen = *EOES Sin(lcx — wt)z + = 0 Sll’l( Tr—w )

2 2 o
Factoring out the sine portion gives
1 1B}
Egen = (§GOE§ + 57;)) sin(kx — wt)?

Integrating over one wavelength (respect to x) gives

This result is not dependent on t, and thus energy is not being gained nor
lost over time.

2.5 Mathematical Basis

In order to prove that the wave equation satisfies Maxwell’s Equations, a proof
of the divergence of the curl and the curl of curl vector identities must be
established [4].

2.5.1 Divergence of the Curl

Divergence of the curl states that
V- (VxF)=0. (1)
To prove this, we need only to expand the terms.

_¢6FZ (9Fy _ﬁan_an “%_%

The dot product yields

OF. OF, OF. OF, OF, OF,
. F) = z _ Yy z T y o T
VAV xF) Oxdy Ox0z Oydx + 0y0z * 0z0x 020y

The terms can be rearranged to form

OF.  OF, oF,  OF,

B )+ ( - OF, OF,
Oxdy Oyox 0z0x  0x0z

VAV xF) = ( +(8y5‘z_828y

) )



as long as all partials are continuous and differentiable, all terms on the right
side cancel leaving

V- (VXF)=0
2.5.2 Curl of the Curl
[5] The Curl of the Curl is
Vx(VXF)=-V?F+V(V-F) (2)

To prove this, an expansion of terms is sufficient

. OF, O0F, . O0F. OF, - OF, OF,
VXF_Z(@y 32) ](8$ 3z)+ (333 3y)

Vx(VXF)=
0*F, 0°F, 0*F, O0°F,

i — + + )
Oydx  Oy?  020x 022
PR _PR PR PR,
N or2 0xdy 020y 022
75‘2Fz N 0?’F, B 0*F, B 0°F,

0x2  Oxdz  Oy*:  Oyoz

+ k( )

Next week need to expand —V2F + V(V - F)
Starting with the term on the right we get
0F, O0F, OF,

=4+ =Ly

ox oy 0z

V. F

Taking the gradient gives

V(V-F)=

1(32}'} 0?F, N 82FZ)+
0x2  Oxdy Oxdz

0*F, N 0°F, N 6‘2Fz)+

Oyox Oy  Oyodz

0?F,  0°F, N 0*F,

020x 020y 022

o

o

)

[6] The Vector Laplacian V2F is applied to each component of a vector,
yielding



ViF =
%(aze N 0’F, N 0*F,
Ox? Oy? 072
2 2 2
J (%;;y - aa;;y N a@?”
l%(aQFz N 0*F, N 6‘2Fz)
Ox? Oy 022

)+

Subtracting these two equations gives the final result of

V(V-F)-V*F =

Z(aZFy _PF PR 62ng)
oydx  Oy? 0z0x 022

. O9°F, O°F, O°F. O°F,

+i(= Ox? + 0xdy + 020y 022 )
. 0°F, O0O*F, O%*F, O°F

+ k(- + - - )
0x2  Oxdz  Oy?  Oyoz

This is equivalent to the expression given for the cross product of the cross
product, so
Vx(VxF)=-V?F+V(V-F)
2.6 Satisfying Maxwell’s Equations
With the two previously proven identities, we can now show that the Wave
Equation satisfies Maxwell’s Equations.
2.6.1 Electric Field

[7] Starting with the Fourth equation we have

0B
VI E= gy
Using V x on both sides gives
oV x B
E)=—
V x (V x E) 5

From identity (2) we know V x (V x E) = —V?E+V(V - E) Since there are
no sources, p = 0 so the term V - E = 0 from the first of Maxwell’s equations,



making the term V(V - E) = 0. We are then left with
V x(VxE)=-VE

. We can rearrange Maxwell’s third equation to be
oF
V xB ZNOJ”FNOEOE

since J is 0 in a vacuum, the equation becomes

OF
VxB= MOGOE

Substituting both of these terms into the equation

oV x B

VXx(VXE)=— 5

and canceling the negative signs gives

02E
2 _

VIE = poco sy
9’E
0x2
02E 2E
or _ OE
o2 M0 5

Since this is the one dimensional case V2E =

which gives

which is the form of the wave equation. This also implies that pgeg = C%, which

. 1
can be rearranged to give ¢ = .
g & VvV Ho€o

2.6.2 Magnetic Field

Starting with the third of Maxwell’s equations, we have

OF
V x B ~ Moo = HoJ

Since J = 0 the equation becomes

oF
B - —_— =
V X Ho€o n 0

Rearranging and applying V x to the equation yields

oV x E
ot

Identity (2) gives Vx(VxB) = —V2B+V(V-B). Maxwell’s second equation
says V- B = 0. Applying this to the identity gives V x (V x B) = —V2B.

V x (V x B) = o€



From Maxwell’s fourth equation, we get V x E = —%—?. Substituting these two

equations into our modified form of Maxwell’s third equation gives

2 0
V*B = poeo——>-
Ho€o a2
Since this is the one dimensional case V2B is just 361’? which gives us

0’B 0’°B
O
o2~ 102
This is the form of the wave equation and, like the electric field version,

implies that ¢ = \/JOTO

2.7 Magnetic and Electric Field Waves

In the Wave Equation section we found % - c%% = 0 was solved by ¢(x,t) =
posin(kr — wt). Likewise, the Magnetic and Electric fields were shown to take
the form %ZT? = yoeo%sz and ?;TE = ugeo% Which yields solutions B(z,t) =
gBosin(kz — wt) and E(z,t) = &Eysin(kz — wt). We know the directions of
the E and B fields must be perpendicular in an electromagnetic wave, so the
directions & and g were assigned to give an orientation.

2.7.1 Relationship between E; and By

By examining Maxwell’s third equation, we can derive a relationship between
the values of Fy and By. Maxwell’s third equation states

V xB *Moﬁoaaff = poJ
Taking the proper derivatives and curl we get
V X B = —kiBy cos(kz — wt)

and OE A

i —wEq cos(kz — wt)k
Substituting these into Maxwell’s third equation and using J = 0 we obtain

wigeg cos(kz — wt)k = kBg cos(kz — wi)k
Dividing out like terms yields
wpoegEo = kBy
which can be rearranged to obtain
Ey k

By whoeo

It has been shown that w = ck and that ¢ = /3060 so the equation can be
rewritten as

Ey

=2 _.

By



2.7.2 Poynting Vector

The Poynting Vector of an Electromagnetic wave is defined as

1
S=—ExB
Ho
Carrying out the cross product yields
_ EyBysin®(kz — wt)
Ho

S

Z

Taking the average intensity of the wave over a period yields

FEyBy
210

S:

2
since we know the relationship between Ey and By to be g—z = ¢ the expression

can alsg) be written as

_ Ej - o _ Bges
S = e 2 or S = T 2

3 Conclusion

It has been shown that the one dimensional wave equation can be used to
satisfy Maxwell’s equations for both the Electric and Magnetic fields, and that
this solution can be used to derive fundamental properties of an electromagnetic
waves. The equations for the Electric and Magnetic fields were computed to be
E(z,t) = @Epsin(kz —wt) and B(z,t) = §Bysin(kz —wt) respectively. This was
proved using Maxwell’s equations as well as the curl of the curl and divergence
of the curl vector identities. Using Maxwell’s third equation it was determined
that Fy and By were related by the equation g—g = c. Furthermore, the poynting
vector of the two fields was used to determine the average rate of energy transfer
of the waves, which came out to be S = 2]550 Z. The one dimensional wave
equation can thus be seen as a useful representation of electromagnetic waves
propagating in a vacuum, and provides a basis for the properties of the wave.
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