THE SUM OF THE RECIPROCALS OF THE SQUARES A Proof by Leonhard Euler

As if one needed further evidence for the genius of Leonhard Euler, here is one of his solutions to the summation of a famous series. The sum of the reciprocals of the squares of the natural numbers was a question first posed in 1644 by Pietro Mengoli, and left unsolved until Leonhard Euler 1734 [1]. The original method that Euler used was not what follows, but an expansion of the series of the sine and cosine functions. What makes this particular method appealing is a reliance on multivariate calculus techniques [2]. It was well-known at the time that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges for p < 1 to some finite value; finding that specific value, however, is a far greater challenge. The object of this paper is to find, and prove, the exact value that this series converges to.

$$\lim_{n \to \infty} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Euler accomplished this by showing first that this series is equal to the following integrated region, and then finding the exact value of the definite integral.

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dy dx$$

This double integral over the region $D = \{x, y | 0 \le x \le 1, 0 \le y \le 1\}$, which is represented graphically below, at first appears to have nothing in common with this series; however, the integrand can be rewritten. In particular, $\frac{1}{1-xy}$ is of the form $\frac{1}{1-p}$ for |p| < 1 can be expanded as an infinite series.

$$S_n = 1 + p + p^2 + p^3 + \dots + p^n$$

$$p * S_n = p + p^2 + p^3 + \dots + p^{n+1}$$

$$s_n - p * s_n = 1 - p^{n+1} = s_n(1-p) \Longrightarrow s_n = \frac{1 - p^{n+1}}{1-p}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - p^{n+1}}{1-p} = \frac{1}{1-p}$$

$$p = xy \Rightarrow \frac{1}{1-xy} = xy + x^2y^2 + x^3y^3 + \dots$$

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dy dx = \int_{0}^{1} \int_{0}^{1} (xy + x^{2}y^{2} + x^{3}y^{3} + \ldots) dy dx = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

So we know that this integral is equal to the sum of the reciprocals of the squares. Euler performed a transformation of variables here to find the exact

value of the double integral.

Let $x = \frac{u+v}{\sqrt{2}}$, and let $y = \frac{u-v}{\sqrt{2}}$. Because the determinant of the Jacobian matrix is 1, or equivalently because rotation is a linear transformation, dydx = dudv.

Intuitively this makes sense as the area of the transformed region is 1 * 1 = 1, as the region D is rotated counterclockwise by 90 degrees, now changing the

limits of integration accordingly to the bounds on the U-V axis.

Here is an image of the unit square representing the region D.

Here we substitute in (u, v) for (x, y) and evaluate.

$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1 - xy} dy dx = \int_{0}^{\frac{\sqrt{2}}{2}} \int_{-u}^{u} \frac{2}{(2 - u^2) + v^2} dv du + \int_{\frac{\sqrt{2}}{2}}^{\sqrt{2}} \int_{-u + \sqrt{2}}^{-u + \sqrt{2}} \frac{2}{(2 - u^2) + v^2} dv du = \mathbf{A} + \mathbf{B}$$

1 Evaluating the inside integral of A:

Let
$$\alpha = \sqrt{2 - u^2}$$
,

$$\Rightarrow \int_{-u}^{u} \frac{2}{(2-u^2)+v^2} dv = 2 \int_{-u}^{u} \frac{1}{\alpha^2+v^2} dv = \frac{2}{\alpha} \arctan \frac{v}{\alpha} \Big|_{-u}^{u} = \frac{4}{\alpha} \arctan \frac{u}{\alpha}$$

$$= \frac{4}{\sqrt{2-u^2}} \arctan \frac{u}{\sqrt{2-u^2}} = \int_{0}^{\frac{\sqrt{2}}{2}} \frac{4}{\sqrt{2-u^2}} \arctan \frac{u}{\sqrt{2-u^2}} du$$

This can be evaluated with the substitution $u = \sqrt{2}\sin\theta$, $du = \sqrt{2}\cos\theta d\theta$

$$\Rightarrow \int_{a}^{b} \frac{4}{\sqrt{2 - \sqrt{2}\sin\theta^{2}}} \arctan\frac{\sqrt{2}\sin\theta}{\sqrt{2 - \sqrt{2}\sin\theta^{2}}} * \sqrt{2}\cos\theta d\theta = 2 * \theta^{2} \Big|_{a}^{b}$$

where $u = \sqrt{2} \sin \theta \Rightarrow \theta = \arcsin \frac{u}{\sqrt{2}}$ This means that the total of **A** is just

$$2 * \arcsin\left(\frac{u}{\sqrt{2}}\right)^2 \Big|_0^{\frac{\sqrt{2}}{2}} = \frac{\pi^2}{18}$$

2 Evaluating the Integral B:

$$\int_{\frac{\sqrt{2}}{2}}^{\sqrt{2}} \int_{u-\sqrt{2}}^{-u+\sqrt{2}} \frac{2}{(2-u^2)+v^2} dv du$$

From our earlier result, it was shown that the inside integral stays the same, and only the limits of integration change.

$$\frac{4}{\sqrt{2-u^2}}\arctan\frac{v}{\sqrt{2-u^2}}\Big|_{u-\sqrt{2}}^{-u+\sqrt{2}} = \int_{\frac{\sqrt{2}}{2}}^{\sqrt{2}} \frac{1}{\sqrt{2-u^2}}\left[\arctan\left(\frac{u-\sqrt{2}}{\sqrt{2-u^2}}\right) - \arctan\left(\frac{-u+\sqrt{2}}{\sqrt{2-u^2}}\right)\right] du$$

Just as last time let $u = \sqrt{2} \sin \theta$, $du = \sqrt{2} \cos \theta$ and the integral simplifies to

$$2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \arctan\left(\frac{-\sqrt{2}\sin\theta + \sqrt{2}}{\sqrt{2\cos^2\theta}}\right) - \arctan\left(\frac{\sqrt{2}\sin\theta - \sqrt{2}}{\sqrt{2\cos^2\theta}}\right) d\theta$$
$$= 2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \arctan\left(\frac{-\sin\theta + 1}{\cos\theta}\right) d\theta - 2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \arctan\left(\frac{\sin\theta - 1}{\cos\theta}\right) d\theta$$

$$=4\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\arctan\left(\frac{-\sin\theta+1}{\cos\theta}\right)d\theta=4\theta\arctan\left(\frac{-\sin\theta+1}{\cos\theta}\right)d\theta-4\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\theta\frac{1}{1+\Delta^{2}}\frac{d\Delta}{d\theta}d\theta$$

For simplicity,

$$\begin{split} \Delta &= \frac{1-\sin\theta}{\cos\theta} \\ \frac{d\Delta}{d\theta} &= \frac{\sin\theta - 1}{\cos^2\theta} \\ \Delta^2 &= \frac{1-2\sin\theta + \sin^2\theta}{\cos^2\theta} \\ 1 + \Delta^2 &= \frac{1-2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos^2\theta} = \frac{2-2\sin\theta}{\cos^2\theta} \\ \frac{1}{1+\Delta^2} &= \frac{1}{2}\frac{\cos^2\theta}{1-1\sin\theta} \end{split}$$

By substituting these back in, it can be seen that the integral miraculously simplifies.

$$4\theta \arctan{(\frac{-\sin{\theta}+1}{\cos{\theta}})}d\theta - 4\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\theta \frac{1}{1+\Delta^2}\frac{d\Delta}{d\theta}d\theta$$

$$\theta \arctan\left(\frac{-\sin\theta + 1}{\cos\theta}\right)d\theta - 4\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \theta \frac{1}{2}\frac{\cos^2\theta}{(1 - \sin\theta)}\frac{(-1)(1 - \sin\theta)}{\cos^2\theta}d\theta$$

$$=\theta \arctan\left(\frac{-\sin\theta+1}{\cos\theta}\right)d\theta - 2\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\theta d\theta = 4\frac{\pi^2}{36} = \frac{\pi^2}{12} = \mathbf{B}$$

Adding B to A and equating it to the original geometric series, we find that the summation of the infinite series of the reciprocals of the squares of all positive integers,

$$4\frac{\pi^2}{36} + \frac{\pi^2}{18} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \blacksquare$$

References

- Ayoub, Raymond, Euler and the zeta function, Amer. Math. Monthly 81: 106786 1974.
- [2] Stewart, James, Calculus: Early Transcendentals, Cengage Learning, Boston, 7th edition, 2013.