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THE SUM OF THE RECIPROCALS OF THE
SQUARES

A Proof by Leonhard Euler

As if one needed further evidence for the genius of Leonhard Euler, here is one
of his solutions to the summation of a famous series. The sum of the
reciprocals of the squares of the natural numbers was a question first posed in
1644 by Pietro Mengoli, and left unsolved until Leonhard Euler 1734 [1]. The
original method that Euler used was not what follows, but an expansion of the
series of the sine and cosine functions. What makes this particular method
appealing is a reliance on multivariate calculus techniques [2]. It was
well-known at the time that the series

∑∞
n=1

1
np diverges for p < 1 to some

finite value; finding that specific value, however, is a far greater challenge.
The object of this paper is to find, and prove, the exact value that this series
converges to.

lim
n→∞

(1 +
1

22
+

1

32
+

1

42
+ . . .+

1

n2
) =

∞∑
n=1

1

n2

Euler accomplished this by showing first that this series is equal to the
following integrated region, and then finding the exact value of the definite

integral.

1∫
0

1∫
0

1

1− xy
dydx

This double integral over the region D = {x, y|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, which is
represented graphically below, at first appears to have nothing in common

with this series; however, the integrand can be rewritten. In particular, 1
1−xy

is of the form 1
1−p for |p| < 1 can be expanded as an infinite series.

Sn = 1 + p+ p2 + p3 + . . .+ pn

p ∗ Sn = p+ p2 + p3 + . . .+ pn+1

sn − p ∗ sn = 1− pn+1 = sn(1− p) => sn =
1− pn+1

1− p

lim
n→∞

sn = lim
n→∞

1− pn+1

1− p
=

1

1− p

p = xy ⇒ 1

1− xy
= xy + x2y2 + x3y3 + . . .
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1∫
0

1∫
0

1

1− xy
dydx =

1∫
0

1∫
0

(xy + x2y2 + x3y3 + . . .)dydx =

∞∑
n=1

1

n2

So we know that this integral is equal to the sum of the reciprocals of the
squares. Euler performed a transformation of variables here to find the exact

value of the double integral.
Let x = u+v√

2
, and let y = u−v√

2
.

Because the determinant of the Jacobian matrix is 1, or equivalently because
rotation is a linear transformation, dydx = dudv.

Intuitively this makes sense as the area of the transformed region is 1 ∗ 1 = 1,
as the region D is rotated counterclockwise by 90 degrees, now changing the

limits of integration accordingly to the bounds on the U-V axis.

Here is an image of the unit square representing the region D.

Now here is the rotated region of integration.

Here we substitute in (u, v) for (x, y) and evaluate.
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1∫
0

1∫
0

1

1− xy
dydx =

√
2

2∫
0

u∫
−u

2

(2− u2) + v2
dvdu+

√
2∫

√
2

2

−u+
√

2∫
u−
√

2

2

(2− u2) + v2
dvdu = A + B

1 Evaluating the inside integral of A:

Let α =
√

2− u2,

⇒
u∫
−u

2

(2− u2) + v2
dv = 2

u∫
−u

1

α2 + v2
dv =

2

α
arctan

v

α

∣∣∣u
−u

=
4

α
arctan

u

α

=
4√

2− u2
arctan

u√
2− u2

=

√
2

2∫
0

4√
2− u2

arctan
u√

2− u2
du

This can be evaluated with the substitution u =
√

2 sin θ, du =
√

2 cos θdθ

⇒
b∫
a

4√
2−
√

2 sin θ
2

arctan

√
2 sin θ√

2−
√

2 sin θ
2
∗
√

2 cos θdθ = 2 ∗ θ2
∣∣∣b
a

where u =
√

2 sin θ ⇒ θ = arcsin u√
2

This means that the total of A is just

2 ∗ arcsin (
u√
2

)
2∣∣∣√2

2

0
=
π2

18

2 Evaluating the Integral B :
√

2∫
√

2
2

−u+
√

2∫
u−
√

2

2

(2− u2) + v2
dvdu

From our earlier result, it was shown that the inside integral stays the same,
and only the limits of integration change.

4√
2− u2

arctan
v√

2− u2

∣∣∣−u+
√

2

u−
√

2
=

√
2∫

√
2

2

1√
2− u2

[arctan (
u−
√

2√
2− u2

)−arctan (
−u+

√
2√

2− u2
)]du
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Just as last time let u =
√

2 sin θ, du =
√

2 cos θ and the integral simplifies to

2

π
2∫

π
6

arctan (
−
√

2 sin θ +
√

2√
2 cos2 θ

)− arctan (

√
2 sin θ −

√
2√

2 cos2 θ
)dθ

= 2

π
2∫

π
6

arctan (
− sin θ + 1

cos θ
)dθ − 2

π
2∫

π
6

arctan (
sin θ − 1

cosθ
)dθ

= 4

π
2∫

π
6

arctan (
− sin θ + 1

cos θ
)dθ = 4θ arctan (

− sin θ + 1

cos θ
)dθ − 4

π
2∫

π
6

θ
1

1 + ∆2

d∆

dθ
dθ

For simplicity,

∆ = 1−sinθ
cos θ

d∆
dθ = sin θ−1

cos2 θ

∆2 = 1−2 sin θ+sin2 θ
cos2 θ

1 + ∆2 = 1−2 sin θ+sin2 θ+cos2 θ
cos2 θ = 2−2 sin θ

cos2 θ

1
1+∆2 = 1

2
cos2 θ

1−1 sin θ

By substituting these back in, it can be seen that the integral miraculously
simplifies.

4θ arctan (
− sin θ + 1

cos θ
)dθ − 4

π
2∫

π
6

θ
1

1 + ∆2

d∆

dθ
dθ

θ arctan (
− sin θ + 1

cos θ
)dθ − 4

π
2∫

π
6

θ
1

2

cos2 θ

(1− sin θ)

(−1)(1− sin θ)

cos2 θ
dθ

= θ arctan (
− sin θ + 1

cos θ
)dθ − 2

π
2∫

π
6

θdθ = 4
π2

36
=
π2

12
= B

4



Samuel Castillo March 2, 2016

Adding B to A and equating it to the original geometric series, we find that
the summation of the infinite series of the reciprocals of the squares of all

positive integers,

4
π2

36
+
π2

18
= 1 +

1

22
+

1

32
+

1

42
+ . . . =

∞∑
n=1

1

n2
=
π2
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