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1 Introduction

Modern societies heavily rely on information flow, but not all information
should be publicly accessible. Valuable data, such as credit card numbers,
passwords and private messages, is transferred online and thus may be
vulnerable to interception. Therefore information needs to be secured.
Ciphers and codes are able to conceal the content of messages, hence
reducing the risk of an information leak.

Surprisingly, cryptosystems are based on mathematical concepts, including
algorithms and number theory. The mathematical structures underlying
the operations carried out in order to code data are responsible for their
security.

But how secure are presently used systems compared to previous ones? Are
they truly incorruptible?

In this exploration, the development of cryptography throughout history
will be presented chronologically, using selected ciphers as examples. Every
technique will be tested upon advantages and weak points. Furthermore, it
will be shown how the difficulties in the extraction of the content of an
enciphered message arise from the mathematics used.

I personally feel drawn to this topic, because it demonstrates how abstract

mathematics like number theory are practically applied in real life in a scale
which affects everybody on a daily basis. Moreover, the secrecy aspect acts
very alluring. Another aspect is my curiosity regarding earning money with
mathematics. Security systems are told to be very valuable, so as someone

who plans a career in a mathematics-related field I would love to learn what
makes people pay for your mathematics.

2 Preceding cryptosystems

2.1 The Caesar cipher!

One of the earliest cases of cipher use is the Caesar cipher, named after
Julius Caesar, who used it mainly to encrypt relevant military messages.
The mechanism behind is straightforward:

The alphabet is transformed into a number series, so that
a=0,b=1,¢c=2, etc. The message is transcripted letter by letter: A
chosen integer k, which is the key, is added to the number of the letter one

thttp://en.wikipedia.org/wiki/Caesar_cipher, 16.02.2015



wishes to encipher, then the letter which is represented by the sum is
written down.

The consequence is a shift in the alphabet by the number k, which is why
this technique also is called the Caesar shift. Shifts of more than 25 return
to the beginning of the alphabet and continue from there on. The operation
for k = 0 does not have an enciphering effect in the case of the Caesar
cipher.

The receiver of the message just needs to subtract the number k from the
numbers of the letters in the message and write down the resulting letters.
Mathematically, the process of both encryption and decryption can be
represented with help of the modulo operator. In the example, x is the
number of the letter we en- or decipher and is defined as 0 < z < 25 and k
is the known key.

Encryption:

Ey(z) = (x +k) mod 26
Decryption:

Dy(x) = (x — k) mod 26

The common alphabet is substituted by only one modified alphabet (the
modification is the shift by k), due to this the Caesar cipher is a
monoalphabetic cipher.

An advantage of this method is that it does not require immensely complex
calculations to translate the content, which reduces both the number of
mistakes in the final version and the time it takes to transform the content
when knowing the key.

Nonetheless, the disadvantages prevail. The key needs to be known by both
parties prior to transmission and has to be delivered safely. Without a safe
channel, which is not present until the key is established, the key can easily
be seized by unauthorized individuals. This condition is crucial, since a
reader accesses the information effortlessly with the key.

But the main reason why this cipher cannot solidly secure the information
is the fact that there are only 25 possible shifts, all in the range from 0 to
25. Hence even without the key the interceptor needs maximally 25 trials
to encipher the message, just by going through all possibilities.

This cipher could be cracked by a human in a matter of minutes, which
disqualifies it from serious application.

However, the cipher can be reinforced by altering the key, for example
depending on the position of a letter in a word. The first letter is shifted by



k, the second by k 4+ 1, etc. This would be the polyalphabetic version of the
Caesar shift.
The cipher created is as a matter of fact a special case of the next cipher

type.

2.2 The Vigeneére cipher?

A further development in cryptography was made with the introduction of
keys longer than one character. In the Vigenere cipher one uses a keyword
to encipher a message. The process is best explained with an example. One
still operates with an alphabet and assigned positions 0-25 for the letters.

keyword m a t h
keyword number 12 0 19 7

Next, the keyword is written over the message as many times as needed.
The letter on top indicates the shift, the message letter obviously is the
letter shifted. That operation is performed by the formula used for Caesar
shift encryption.

mathmathmat 12 0 19 7 12 0 19 7 12 0 19
exampletext 4 23 0 12 15 11 4 19 4 23 19
qvttblxagxm 16 23 19 19 27 11 23 26 16 23 38

Thus we can see that the reinforced Caesar cipher was indeed a Vigenere
cipher with the whole alphabet as the keyword, starting at a selected point.
After the encryption, one letter is represented by different symbols and the
same symbols can actually stand for different letters.

When encoding using a five character key with no repeated letter, one has
five possible non-identical representations of a three characters word, such
as "the”.

b ¢ d e t h e
t h e (a+t) (b+h) (cte)
t h e (b+t) (c+h) (d+e)
t h e] (c+t) (d+h) (ete)
e t h| (d+t) (e+h) (ate)
h e t | (e+t) (a+h) (b+e)

http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher, 16.02.2015
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All in all there are five word possibilities, 26 encryption possibilities per
letter (the shift of 0 shall be regarded as a shift, since even when a letter
once remains unchanged it does not matter when all others are changed).
This method offers 5 - 263 = 87880 potential representations for a three
character word using a keyword with no repeating characters.

Compared to the 25 possibilities in the Caesar shift, the Vigenere cipher’s
87880 would, assuming both are worst case scenarios, in which the solution
is eventually calculated , take approximately 3515 times as long to compute
by testing all potential ciphers. The time needed to find the length of the
key is disregarded.

With a fixed key, the number of representations a word has is equal to the
number of the keyword’s characters.

3 Mathematical concepts

3.1 Extended Euclidean algorithm?

Before discussing the extended version, first the Euclidean algorithm shall
be presented. The Euclidean algorithm is used to find the greatest common
divisor (from now on referred to as GCD). The procedure is based on
division with rest. Useful definitions concerning the greatest common
divisors will be deduced first. Variables a, b, f are integers. One makes use
of the fact that the GC'D(a,b) also is the GC'D(a — b, b). To prove that,
one first proves that GC'D(a,b) divides (a — b, b) and then that there is no
greater divisor than GC'D(a,b) to (a — b,b).

(1) GC'D(a,b) divides both a and b

(2) GCD(a,b) divides sa + tb when t and b are integers, since the term can
be factorized, leaving an integer in the bracket. Since s can be 1 and ¢ can
equal —1, it also divides a — b

(3) GCD(a,b) divides (a — b, b), according to (1) and (2)

Now the proof that it is the greatest divisor follows.

For the GC'D(a,b) is a divisor of (a — b, b), according to (1) it must divide
both a and b . It is assumed that there is a number f greater than

GCD(a, b) which can divide (a — b,b). The number fevidently must divide
a — b and b. Using (2), it also must divide (a — b) + b = a. The consequence
is the condition that it must divide a,b and a — b, but there is no greater

3Christian ~ Spannangel: "Erweiterter  Euklidischer  Algorithmus” Teil 1:
http youtu.beQORmBQo8j0, Teil 2: http://youtu.be/bNafLCsbGA, Teil 3:
http://youtu.be/nD6psV2vkRU, 5.6.2012



common divisor to a and b than GC'D(a,b). Hence the existence of the
number f is disproven and it can be stated that:

(4) GCD(a,b) = GCD(a — b,b)

The following definitions are stated with apodictic certainty.

(5) GCD(a,b) = GCD(b,a)

(6) GCD(1,a) =1

(7) GCD(0,a) = a, for a # 0

When calculating the GC'D(a,b) with a > b, one is interested in first
reducing the figures a and b. An example with a = 739 and b = 211 will be
used to demonstrate the process.

GCD(739,211) & GCD(739 — 211,211) = GC'D(528,211) <

GCD(528 —211,211) = GCD(317,211) & GCD(317 — 211,211) =
GCD(106,211) & GCD(211,106) < GCD(211 — 106, 106) =
GCD(105,106) < GCD(106,105) < GCD(1,105)

The process can be stopped here, since it is known considering (6)
GCD(1,a) = 1. When the GCD is equal to one, a and b are said to be
relatively prime or coprime.

It is obvious that the subtraction of 211 does not need to be repeated ¢
times, but one can subtract ¢ - 211 instantly. This leads to the Euclidean
algorithm, which can be noted as follows for known integers r; and 7s:

rL=4¢q1 T2+ T3
o =¢q2 T3+ T4

Tne2 = (n2Tn1+0, 1,1 is the GCD(ry,rs)

One calculates divides r; by o mentally, notes the rest r3, and follows the al-
gorithm. The modulo operator is especially practical to use in this algorithm:

rq = 11 mod 7o
or generally
rE = Tp_9 mod 751

The extended Euclidean algorithm is used to calculate the algorithm
backwards, it is for solving the equation az + by = ¢, the linear Diophantine
equation. It will be used to express ¢ = GC'D(a,b) as a linear combination
of a and b. Returning to our example, noted with the Euclidean algorithm:
(1) 739 = 3-211 + 106

(2) 211 =1-106 + 105

(3) 106 =1-105+1

(4) 106 =105-14+0



Starting from the GC'D(739,211) =1 = 106 — 1 - 105, the algorithm is
reversed in order to express the last remainder in terms of a and b:

1 =106 —1-105 (2) is rearranged for 105

1=106—-1-(211—-1-106) = —1-211+2-106 (1) is rearranged for 106

1=—-1-211+2-(739-3-211) =2-739 — 7- 211, resulting in z = 2 and
y=-T

3.2 Congruence modulo*

When one writes a = b mod ¢ , it means that a and b leave the same rest
when divided by ¢, where a, b are integers and ¢ is a natural number. The
relationship is called congruence and is denoted with the symbol seen above.
The term is true when the difference between a and b is divisible by c. It is
important to mention that the mod c is not the modulo operator used on a
side on the expression, but just an information in which modulo the numbers
are congruent.

3.3 Euler’s totient function®

The function noted as ¢(n), alternatively named the Eulerian phi function,
counts the number of totatives of an integer n.

Totatives are natural numbers relatively prime to n found in the interval
[1;n].

To check whether two natural numbers a, b are co-prime, one needs to solve
the linear Diophantine equation ax + by = 1. If the equation can be satisfied
with integers x,y then a and b are coprime. As shown above, the process
may be very time-consuming.

However there are particular cases where ¢(n) can be calculated without the
algorithm, thus saving time.

Definitions for special cases:

¢(ab) = ¢(a) - p(b)
For a prime number p:

d(p) =p—1

4Christian Spannagel: ~ ”Definition Kongruenz”, http://youtu.be/eD2_Q2KsYj8,
10.1.2012
Shttp://en.wikipedia.org/wiki/Euler%27s_totient_function, 16.02.2015




3.4 The Fermat-Euler theorem?®

A relationship incorporating the Eulerian totient function into Fermat’s little
theorem, valid for relatively prime numbers a, n:

a®™ =1 modn

4 The RSA algorithm

4.1 The method of operation

In the previous ciphers both the transmitter and the receiver applied an
identical key on the message. Ciphers with this property are called
symmetrical ciphers, since the same key is used to go both ways between
the plain text and the cipher text.

The innovative part of the RSA algorithm is that it is an asymmetrical
algorithm: It uses two keys, the encrypting public key and the decrypting
private key. This mechanism implies that the ability to write a message in a
cipher does not entail the ability to reverse the encryption, at least not in
an acceptable time frame. This condition arises from the mathematical
basis of the algorithm: It is not mathematically challenging to multiply two
primes or perform a modular exponentiation, but the inverses are
immensely time-consuming and possibly expensive.

4.2 Generating the key

Initially two prime numbers p and ¢ need to be found. This is untroublesome,
since checking for primality is an relatively easy task. In practice both p and
q are larger than 2512 7,

Next, the primes are multiplied, the product is called N. The factors p and
q are secret, while N is public.

@(N) is then found using ¢(N) = (p — 1) - (¢ — 1). The fact that the factors
P, q are secret forces an interceptor to calculate ¢(N) by checking all numbers
from 1 to N for common factors with V.

The public exponent e (for encryption) is generated. It can be chosen from
the set 1 < e < ¢(N), with the conditions that it must be an integer and has
to be relatively prime to ¢(N), meaning that the GCD(e,»(N)) = 1. The

Shttp://en.wikipedia.org/wiki/Fermat%27s_little_theorem#Generalizations,
16.02.2015
" The RSA cryptosystem.mp4”, http://youtu.be/guYNbJkiGUI



condition regarding relative primality are crucial: If they are not fulfilled, it
may be impossible to en- or decrypt the message.

The public key consisting of e and N is now ready.

The private key d (for decryption) is determined as the multiplicative inverse
of e mod ¢(N), which stands for e-d =1 mod ¢(V).

4.3 RSA in practice

In order to encrypt a message, an example key must be computed.
To prevent the mathematics from becoming unnecessarily complicated, small
prime numbers p = 7 and ¢ = 17 are selected. Now the key generation steps
are followed.

N=p-q=7-17=119

$(N)=(p—1)-(g—1) = ¢(119) = 6- 16 = 96

e is chosen according to the conditions. For the example it is defined to be
e=13.

To calculate d one needs to solve the equation
e-d=1 mod ¢(N)=11-d=1 mod 96

Since in modular arithmetic all terms e -d + k- ¢(IN) =1 mod ¢(N) are
congruent for all k£ values, one needs to find an expression which outputs 1
as a linear combination of e and ¢(N). For the reason that e and ¢(NV)
were chosen to be relatively prime, it is known that their greatest common
divisor is 1 and they can fulfill the linear Diophantine equation.Thus one
applies the extended Euclidean algorithm:

96 =7-134+5
13=2-5+43
o=1-3+2
3=1-2+4+1

The extended Euclidean algorithm is used to express 1 as a linear combination
of (N) and e:

1=3-1-2
1=3-1-(5-3)=2-3-1-5
1=2-(13-2-5)—1-5=2-13-5-5
1=2-13-5-(96—7-13)=37-13—5-96

When one uses the operator mod 96 on the last expression, it becomes
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37-13—-5-96=1 mod 96
37-13=1 mod 96

Knowing that e = 13, d is apparent when the expression is compared to
e-d=1 mod ¢(N)

=d =237
Finally, the key is finished. The public part (11,119) can be published. Now
one is able to encrypt and decrypt a message using the following formulas
for a message m, which must be smaller than N and relatively prime to p
and ¢, and the concealed message ¢ :
c=m° mod N

It can be seen that only the public key is used to encrypt the message.
m=c? mod N

The private key unravels the message.

To avoid needless translation of letters into numbers, the message is given
as a number, in this example it is 5.

54=5" mod 119
The encrypted message representing 5 is 54. The second formula is used to
reverse the process:

5=54°" mod 119

Most calculators have failed to compute these calculations, the calculator
Web 2.0 Taschenrechner® shall be credited for completing this colossal task.
The key is proven valid, the output is identical to the input.

8http://web2.0rechner.de/



4.4 Analysis

How can such an elegant procedure work and grant security? And why were
the conditions for e and d constructed the way they are?
From the formulas used it can be deduced that:

c=m° mod N

m=c® mod N
m=ct=m* =m* mod N
Since e-d+k-¢(N)=1<e-d=—k-¢(N)+1, as was said when using the
extended Euclidean algorithm, it can be applied to change the expression

me? = m RO = RO = gy N od N

Using the Fermat-Euler theorem the anticipated equivalence is shown
a®™ =1 modn

To fulfill this equation, m must be relatively prime to N. This is the reason
m was defined as relatively prime to p and ¢, the only factors of N except
1 and N. Since in practice the numbers p and ¢ are of the order 2°'? and
N > 2102 these conditions are not very likely to cause problems. The final
step in the recovery of the message is

m-m!™M " =m. 1" =m mod N

The reliability of the procedure on the secrecy of p and ¢ also becomes trans-
parent in these steps. Knowing p and ¢ results in knowledge of ¢(N), which
is closely linked to d and can be easily used to calculate it.

4.5 Evaluation

The RSA algorithm greatly relies on the insurmountable obstacle which fac-
torization embodies. The greatest number factored so far is the 232-digit
number RSA-768 ?, which took two years of computation with professional
algorithms and supercomputers. Factoring the standard 1024-bit numbers
used to encode was estimated to take 1,000 times more time than the 768-bit

9Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel
Thomé, Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag
Arne Osvik, Herman te Riele, Andrey Timofeev, and Paul Zimmermann: ”Factorization
of a 768-bit RSA modulus”, https://eprint.iacr.org/2010/006.pdf, 18.02.2010
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RSA-768 using the same setup. Considering the cost of running supercom-
puters for two or even 2,000 years straight the profit chances of such endeavor
are questionable: The data may not be worth that much from the beginning
or may lose value with time, making the whole effort pointless.

A realistic threat to the algorithm is the Shor’s algorithm !, an algorithm
which can factorize integers in a considerable amount of steps and thus in
a relatively short time. The only reason it has not been used yet is that it
must be run on a quantum computer, which are not yet constructible, but
the technology will be inevitably developed. The first quantum computer
will mean the downfall of public key cryptography in the sense it is presently
known: The computation power will be sufficient to conduct one way func-
tions in two ways.

5 Reflection

For this exploration I have chosen a topic that I have not dealt with in math-
ematics courses at school even approximately and I am very glad about it.
The concepts were unknown to me and I had to start from the basics, such as
learning what the modulo operator is and the basic operations and concep-
tions of modular arithmetic. Learning by oneself may be challenging but in
the end the understanding is much deeper than if one is exposed to already
processed content.

I also see a vast future advantage in knowing how to use the extended Eu-
clidean algorithm, especially since it is used in connotation with the abstract
idea of linear combinations, which has made clear how general and extensive
basic mathematical operations are.

When constructing the key, I have struggled with the calculation of d, get-
ting either a negative d or an identical one to e. I had to identify the prob-
lem myself and come up with another solution via trial and error and so I
deeply internalized the extended Euclidean algorithm after going through it
15 times.

The idea which public key cryptography is based on, namely that multiplying
is an easy task while factorizing is relatively unfeasible has become clear to
me, but the reason for it is not really transparent. It may be because that
fact is so deeply rooted in the structure of numbers that I yet lack back-
ground knowledge on what numbers are to see through the problem.

The method of the RSA algorithm was surprisingly simple at first sight,
but the simplicity transitioned into confusion while constructing the key by

http://en.wikipedia.org/wiki/Shor%27s_algorithm
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myself. The conditions for the key are derived from different mathematical
concepts, which are merged into the algorithm and it was challenging to win
insight into the particular subparts of the structure while also gaining an
overview. It was the first time in my life that I have learned this many dis-
tinct concepts and discovered the connections in the ideas independantly.
In retrospect I think that I might have included more concepts related to the
RSA, like the Chinese Remainder Theorem, but the reason I chose not to is
that it is not necessary and , since it is only serves as an optimization to the
algorithm and is not essential to it. I felt no need to further elongate the
exploration.

Alternatively, I could have dealt with elliptic curve cryptography (ECC),
another widely used modern cryptosystem based on similar mathematical
concepts, I did not find it as appealing as the RSA algorithm.

Of course not all that I learned is entailed in this exploration: Some concepts
were too specific, another I could not yet grasp. I have the feeling that I only
scratched the surface of the matter, but I acquired a basic understanding of
a very worthwhile topic which I look forward to delve into.
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