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Abstract

We will form a proof of the Arzelà-Ascoli Theorem through use of the Heine-Borel

theorem. We will also be considering some notions of compactness on metric spaces.

The Arzelà-Ascoli Theorem then allows us to show compactness, letting us state and

prove Peano’s existence theorem, pertaining to the existence of the solutions of a type

of ODE. Then we will state the Kolmogorov-Riesz compactness theorem, allowing us to

show compactness in Lp spaces, building from the Arzelà-Ascoli Theorem.
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1 Introduction

The problem of compactness was first discussed, with relation to limit points, by Bolzano,

in his 1817 paper on the intermediate value theorem. At that time, many mathematicians

were finding ways of characterising real numbers using sequences, leading the the sequen-

tial definition of compactness. Since then, the notion of compactness has been extended to

topological spaces. It has been researched by mathematicians such as Weierstass, Lebesgue,

Arzelá and Kolmogorov all of whom have made significant advances in the study of com-

pactness (Manya Raman Sundström , 1997).

The Arezelá-Ascoli theorem, relates the notions of compactness and equicontinuity. It it the

product of two mathematicians, Arzelá and Ascoli, who were studying both equicontinuity

and compactness at a similar time. It was first proven in a weaker form by Ascoli in

1883 then later, in 1893, the proof was completed by Arzelá. Here, we will be showing

how the Arzelá-Ascoli theorem can be proven using the Heine-Borel theorem, which we

will also prove. Throughout this, we will also be characterising compactness by proving

a series of small theorems in metric spaces. This will have the aim of proving that, in

metric spaces, the notions of compactness and sequential compactness are equivalent (Manya

Raman Sundström (1997), J.W Green and F.A Valentine (1961)).

From the Arzelá-Ascoli theorem, we will then prove the Peano Existence theorem, for the

existence of the solutions of ordinary differential equations of the form

x′(t) = f(x, x(t)) (1)

x(t0) = x0. (2)

This will be followed by the statement of another existance theorem, Cathéodory’s Existence

theorem, for differential equations of a slightly different form (Gerald Teschl , 2012).

Furthermore, we will be defining Lp spaces, in order to state the Kolmogorov-Riesz com-

pactness theorem, which, as the name suggests, characterises compactness on Lp spaces.

Although the proof of this is not stated, it is centered around the use of the Arzelá-Ascoli

theorem (Harald Hanche-Olsen and Helge Holden , 2010).

2 Preliminaries

In order to understand many of the following theorems, proofs and definitions, we will

require a few basic notions, used commonly in analysis.

2.1 Notation of Sets

The first of these definitions allow us to characterise sets as open and closed in terms of

balls which will then lead to a rigorous definition of a limit point. Later on, we will use balls
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in many situations, allowing us to use the notion of area around a point in n-dimensional

space.

Definition. Open and Closed Balls

We define the set

Br(x) = {y ∈ Rn : ‖x− y‖ < r}, (3)

as the open ball of radius r and center x on Rn and the set

Br(x) = {y ∈ Rn : ‖x− y‖ ≤ r}, (4)

as the closed ball of radius r and center x on Rn. Any open ball with center x, x ∈ Rn is

called a neighbourhood of X

(George F. Simmons , 1963).

Having defined open and closed balls, we can now give a definitions of open and closed sets

respectively.

Definition. Open Set

A set A ⊂ Rn is an open set if for every point x ∈ A there exists an ε > 0 such that Bε(x)

is contained in A

(George F. Simmons , 1963).

Definition. Closed Set

A set A ⊂ Rn is a closed set if its compliment, Ac := {x ∈ Rn : x /∈ A} is open

(George F. Simmons , 1963).

Following form the notions of closed and open sets, we define closure points and limit points.

Definition. Closure Point

A point A ∈ Rn is a closure point of a set A ⊂ Rn if and only if every neighbourhood of

x contains al least one point of A. The closure of a set A is the set of all closure points of

A and is denoted A

(George F. Simmons , 1963).

Remark. A set A is closed if and only if A = A

(George F. Simmons , 1963).

Limit points and closure points are very closely related, the difference being that the neigh-

bourhoods of limit points must contain at least one point other that the limit point itself,

which can not be said of closure points. From this, it is evident to say that every limit point

is a closure point, although the converse is not true.
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Definition. Limit Point (Accumulation point)

A point x is a limit point of a set A if every neighbourhood of x contains at least one point

of A that is not x

(George F. Simmons , 1963).

2.2 Compactness

The notion of compactness recurs commonly in almost every area of analysis and it is

one that we will be primarily concerned with throughout this paper. It was first touched

upon in 1817 by Bolzano and then returned to in 1877 by Weirstrass, bringing together

their respective research to prove the Bolzano-Weirstrass theorem. At the time, Bolzano

and Weirstrass had the aim of characterising the properties of real numbers in terms of

sequences (Manya Raman Sundström , 1997).

Definition. Bolzano-Weierstrass Property (Limit Point Compactness)

Every bounded infinite subset of Rn has a limit point in Rn

(Manya Raman Sundström , 1997).

This is the first and weakest definition of compactness we will use. Later, we will prove that

in metric spaces, it is equivalent to sequential compactness, as defined below.

Definition. Sequential Compactness

In a Euclidean Space, Rn, A set is sequentially compact if and only if every infinite

sequence has a convergent subsequence

(Manya Raman Sundström , 1997).

The notion of sequential compactness is largely characterised by the Bolzano-Weierstass

theorem. This is stated without proof, considering it to be known.

Theorem 2.1 (The Bolzano-Weierstrass Theorem). If a subset A ∈ Rn is closed and

bounded, it is sequentially compact

(George F. Simmons , 1963).

In Rn, the notions of compactness and sequential compactness are equivalent, as we will

later prove, so here we have a theorem associating compactness with closed bounded sets.

Through the relation of closed, boundedness to a type of compactness, it is evident that

the Bolzano-Weierstrass theorem will be a powerful tool as we aim to form a proof for the

Arzelà-Ascoli theorem.

While Boloanzano and Weiestrass attempted to characterise real numbers in terms of se-

quences, other mathematicians such as Borel and Lebesgue considered the notion of open

covers. Covers proved to be useful, not just in Rn, but in metric spaces and topological

spaces also.
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Definition. Cover

A set, C, is a cover of a space A if it is a collection of subsets Ci ⊂ A whos union is the

space A.

A ⊆
⋃
i∈I

Ci (5)

(Angus E. Taylor , 1958).

Following this, we may form a new, stronger, definition of compactness which we can apply

to all topological spaces.

Definition. (Countable) Compactness

We call a space, A, compact if and only if each open cover, Ci, for generality, has a finite

subcover Kj ⊂ Ci such that K is finite (where i and j index C and K respectively)

(Angus E. Taylor , 1958).

2.3 Continuity

The final preliminary notion we must demonstrate is that of equicontinuity. We will begin

by evaluating the definition of continuity, before extending it to families of functions. The

following is based on Ruth F. Curtain and A.J. Pritchard (1977).

Definition. Continuity

A function f : x 7→ f(x) is continuous if and only if

∀ε > 0 ,∃δ > 0 : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε. (6)

We shall denote a family of functions F , where F = {f1, f2, . . . , fn}. Also, we will denote

C([a, b]) := {f : [a, b]→ R| f is continuous on [a, b]}, (7)

as the space of continuous functions.

From this, we can define a type of boundedness unique to families of functions.

Definition. Uniform Boundedness

A family of functions, F = {f1, f2, . . . ..fn|n ∈ N}, on a set X is uniformly bounded if

there exists an m ∈ N such that fn is bounded by m, ∀fn ∈ F .

Definition. Equicontinuity

A family of functions F ⊆ C[a, b] is equicontinuous if and only if

∀x0 ∈ [a, b], ∀ε > 0, ∃ δ = δ(x, ε) > 0 : |x− x0| < δ (8)

⇒ |f(x)− f(x0)| < ε,∀f ∈ F . (9)
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3 The Heine-Borel Theorem

This section will discuss and prove the Heine-Borel theorem. Although not directly neces-

sary, the Heine-Borel gives a clear route to a proof of the Arzela-Asoli Theorem, as well as

being a strong theorem in its own right. We will make use of this in a later section. The proof

follows directly from, and can be seen as an extension of, the Bolzano-Weierstrass theorem.

In Rn the Bolzano-Weierstrass theorem is equivalent to one direction of the Heine-Borel the-

orem and in the next section we will prove this by proving that every sequentially compact

metric space is compact.

Theorem 3.1 (The Heine-Borel Theorem). Take a subset A ∈ Rn, then A is closed and

bounded if and only if it is compact

(George F. Simmons , 1963).

To prove this, we shall begin by proving that every compact set is closed and bounded.

Then, in order to prove that every closed and bounded set is compact, we will reduce the

problem to one on a closed bounded box. After assuming that the box is not compact we

will use a method of bisection and Cantors intersection theorem (also proved) to form a

contradiction.

Lemma 1. If A is compact, it is bounded.

Proof. Take the interval In = (−n, n), so that

R =

∞⋃
n=1

In. (10)

Then A is covered by {In} and as A is compact, it will be covered by a finite number of

In’s. The largest of the In’s is a bound. Hence if A is compact, it is also bounded.

Lemma 2. If A is compact, it is closed.

Proof. Assume the converse, that if A is compact it is not closed. Let p be a limit point

of A, not in A. Then for every q ∈ A, let Uq be a neighbourhood of q disjoint from some

neighbourhood Vq of p. Then any finite cover {Uq1 , . . . , Uqn} is disjoint from Vq1 ∩ Vq2 ∩
· · · ∩ Vqn , which is a finite union of open sets and hence a neighbouthood of p. Then this is

a neighbourhood of p disjoint from A, contradicting that p is a limit point, hence A must

be closed.

Now, we have that if a set is compact, it is closed and bounded. All that remains to prove

is that if a set A is closed and bounded, it is compact.

Lemma 3. A closed subset of a compact set is compact.
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At this point, we look to reduce our proof so that it is only necessary prove that a closed

bounded subset of a compact set is compact. Proving the above will allow us to say that a

set is compact if a box within that set is compact. We will then be able to use a bisection

argument to find an infinite sequence of nesting boxes.

Proof. Let B be a closed subset of a compact set A ∈ Rn. Let CB be an open cover of B

then U = R/B is open and CB = CA ∪ {U} is an open cover of A. Since A is compact,

then CA has a finite subcover C ′A which also covers the set B. Since U does not contain

any point of B, then B is covered by C ′B = C ′A \ {U}, which is a finite subcollection of the

finite collection of CB. Hence, we can say every open cover CB has a finite subcover and

therefore is compact.

By this result, we can now reduce the remainder of the proof to showing that a closed,

bounded n-dimensional box on Rn is compact. If the set A ∈ Rn is bounded, it can be

enclosed in the box

B0 = [−a, a]n, (11)

where a > 0. Then, by the above theorem, it is enough to prove that B0 is compact.

The following proof is difficult to motivate, until we reach the covering lemma. We will be

making the assumption that the closed bounded box is not compact, hence an infinite cover

has no finite subcover. Then to contradict, we will construct said finite subcover. Firstly

though, we use a bisection argument on the box to find an infinite sequence of nesting

subboxes, for which we can use Cantor’s Intersection theorem.

Lemma 4. B0 is compact.

Proof. Assume, for a contradiction, that B0 is not compact. Then there exists an infinite

open cover C of B0 that has no finite subcover. If we take bisections of the the box B0, it

can be broken up into 2n subboxes, each with a diameter half that of B0. At least one of

the subboxes will be covered by an infinite subcover otherwise C would itself have a finite

subcover in the union of the finite covers of the subboxes (which we assume it does not).

We shall call this infinitely covered subbox B1. The same logic can be reapplied to yield an

infinite sequence of nesting boxes as such:

B0 ⊃ B1 ⊃ · · · ⊃ Bk ⊃ . . . (12)

of which the side length of Bk is 2a/2k, tending to 0 as k →∞.

At this point, we have a sequence of nesting boxes in a compact space. We would like to

find a point around which we can construct a finite cover of Bk. This will require a lemma,

in the form of Cantor’s intersection Theorem which we will prove below.

Lemma 5 (Cantor’s intersection Theorem). On a compact space S, a decreasing nesting

sequence of non-empty compact subsets of S has a nonempty intersection.
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From the statement of theorem alone, it is easy to see how we will be able to apply it, but

first, a proof.

Proof. If we have that

C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ . . . (13)

is a decreasing infinite sequence of non-empty compact subsets of S, we can, for a contra-

diction, suppose that ⋂
Cn = ∅. (14)

Then let Un = X \ Cn. Since
⋃
Un = X \

⋂
Cn and

⋃
Un = ∅, then

⋃
Un = X. As X

is compact and Un is an open cover of it, there exists a finite subcover of Un. Let Uk be

the largest set of this finite cover, then
⋂
Cn = Ck, therefore

⋃
Cn 6= ∅, contradicting the

assumption and proving the theorem.

We can now use Cantor’s intersection theorem to say that the intersection of our Bk,

B0 ∩B1 ∩ · · · ∩Bk ∩ . . . (15)

is not empty. So there must exist a point, p ∈ B0. As C covers B0, then there exists some

U ∈ C such that p ∈ U . As U is open, there is an n-ball B(p) ⊇ U . For a sufficiently large

k, we will have that Bk ⊇ B(p) ⊇ U but this means that Bk can be covered by just U ,

contradicting that C is an infinite cover of B0, with no finite subcovers. Hence, B0 must be

compact, out required condition

(Robert Hanson (2004), Paul Vankoughnett (2010) and George F. Simmons (1963)).

To conclude, as we have proven that if a set is compact, it is bounded and closed and that

if a set is closed and bounded, it is compact, we have proven the Heine-Borel theorem as

written.

4 Compactness in metric spaces

In the last section, we proved the Heine-Borel Theorem without looking too closely at the

notion of compactness. This section will look to give a better insight into compactness,

with the ultimate aim of proving that countable compactness and sequential compactness

are equivalent in metric spaces.

However, before we begin to prove theorems on metric spaces, we must first define a metric

space.

Definition. Metric

Let X be a set, a metric (or distance) on X is a function d : X ×X → R for which the

following conditions are satisfied.
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1. d(x, y) ≥ 0 for all x, y, z ∈ X

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality)

(Ruth F. Curtain and A.J. Pritchard , 1977).

Remark. The last property is commonly known as the triangle inequality, as it should be

obvious that if illustrated graphically, the 3 points x, y and z form a triangle, where the sum

of the lengths of any two sides must be greater or equal to the length of the other side.

Definition. Metric Space

A metric space is an ordered pair (X, d) where X is a set and d is a metric on the set

(Ruth F. Curtain and A.J. Pritchard , 1977).

Remark. The notation for a a known metric space, (X, d), is often shortened to X alone.

Now we have a definition for a metric space, we can begin to review notions of compactness.

Definition. Bolzano-Weierstrass property

A metric space is said to have the Bolzano Weierstrass property if every infinite sequence

has a limit point.

Theorem 4.1. A metric space is sequentially compact if and only if it has the Bolzano-

Weierstrass property.

Proof. Let X be a metric space. Assume that X is sequentially compact and we look to

show that an infinite subset A of X has a limit point. Since A is infinite, we can take a

sequence, {xn} ∈ A, of distinct points and this sequence will have a convergent subsequence,

as we assumed X is sequentially compact. This sequence will converge to a point x, the

limit point of the subsequence and hence a limit point of X.

Now, assume that every infinite subset of X has a limit point. Let {xn} be an arbitrary

sequence in X. If {xn} has a point that is infinitely repeated, then it has a constant

subsequence which is obviously convergent.

If there is no such point, the set of points in the sequence is infinite and by our assump-

tion, there exists a limit point of this set. Hence the subsequence is convergent and it is

sequentially compact

(George F. Simmons , 1963).

Now we will look toward proving the equivalence of compactness and sequential compactness

in metric spaces. We will begin by proving that every compact metric space is sequentially

compact. In order to prove that sequentially compact spaces are compact, we will require

a few additional definitions.
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Theorem 4.2. Every compact metric space is sequentially compact.

Proof. As we already have that a metric space is sequentially compact if it has the Bolzano-

Weierstrass property, we can use these as equivalent and prove this without much difficulty.

Let X be a compact metric space and A an infinite subset of X. Assume that A has no

limit points for a contradiction. Then for every point, p ∈ X, we can form a ball of radius

ε > 0, which contains no point other than p. As A ⊂ X, the set of all of these balls will

form a cover of A. As X is compact, this cover will have a finite subcover, hence, A must

be finite but, A is infinite, so we have a contradiction

(George F. Simmons , 1963).

In order to prove the other direction, that a sequentially compact metric space is compact,

we first must prove a lemma, and with it, introduce the notion of Lebesgue Numbers. As we

will see, Lebesgue numbers are a natural property of compact metric spaces and later we will

use them to finish our proof that sequential compactness and compactness are equivalent

in metric spaces.

Lebesgue Number Lemma. On a sequentially compact metric space, M , given an open

cover {Ci}, there exists a real number a > 0, such that every subset of M , with diameter less

than a, is contained within a member of the cover {Ci}. This a is known as the Lebesgue

number of the cover.

Proof. Suppose, for a contradiction, that {Ci} is an open cover of M , for which no Lebesgue

number exists. Then for any n ∈ N, there exists some xn ∈ M , such that B1/n(xn) ⊇ c

is not true for each Ci ∈ {Ci}, so that 1/n is not a Lebesgue number for {Ci}. As M is

sequentially compact, {xn} has a convergent subsequence, we can call {xn(r)}, converging

to some x ∈M . As Ci covers M , we have x ∈ C0 for some C0 ∈ {Ci} and since C0 is open,

there exists m ∈ N, such that B2/m(x) ⊆ U0. Now, B1/n(x) contains xn(r) for, say, all r ≥ R,

choose r such that n(r) ≥ m and write s = n(r). Then we have that B1/s(xs) ⊆ B2/m(x)

as

d(xs, y) < 1/s (16)

⇒ d(x, y) ≤ d(x, xs) + d(xs, y) (17)

< 1/m+ 1/s (18)

≤ 2/m. (19)

Hence, we have that B1/s(xs) ⊆ U0 which we assumed was not true

(George F. Simmons , 1963).

In the final part of the proof we are working towards, we will be looking to construct an

ε-net for a given sequentially compact metric space. Firstly though, we will need to define

an ε-net.
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Definition. ε-net

On a metric space X, given an ε > 0, a subset A of X is called an ε-net if A is finite and

X =
⋃
a∈A

Bε(a). (20)

(George F. Simmons , 1963). From this, we can now define total boundedness.

Definition. Total boundedness

A metric space X is said to be totally bounded if it has an ε-net for each ε > 0

(George F. Simmons , 1963).

Total boundedness, sometimes referred to as precompactness (not to be confused with

relative compactness), is a strong notion which we will later use in the Kolmogorov-Riesz

theorem.

As we have a sequentially compact set that we wish to find an ε-net for, the natural pro-

gression would be to show that all sequentially compact sets are totally bounded, and hence

we can form an ε-net.

Theorem 4.3. Every sequentially compact metric space is totally bounded.

Proof. Let X be a sequentially compact metric space and ε > 0 given. Take a point x1 ∈ X
and the corresponding ball, Bε(x1). If this ball contains every point of X, then the set {x1}
is an ε-net. For a contradiction, consider, if there exists a point in x, not in Bε(x1). Let

that point be x2 and form the set Bε(x1) ∪Bε(x2). If this contains every point of X, then

the set {x1x2} is an ε-net, otherwise, continue on to form the union

Bε(x1) ∪Bε(x2) ∪ · · · ∪Bε(xn), (21)

which will contain every point of X. Then the sequence {xn} would be a sequence with no

convergent subsequence. This contradicts the required sequential compactness, so {x1, . . . , xn}
is an ε-net, hence X is totally bounded

(George F. Simmons , 1963).

We will use Theorem 4.2, along with the notion of Lebesgue numbers to construct an ε-

net in a given sequentially compact metric space where ε, by the definition of a Lebesgue

number, is equal to a Lebesgue number of a cover of the set. We can then use this ε-net to

show that every cover has a finite subcover.

Theorem 4.4. Every sequentially compact metric space is compact.

Proof. Let X be a sequentially compact metric space and let {Ci} be an open cover of X.

By the Lebesgue Number lemma, we can say that {Ci} has a Lebesgue number, a. Also,

MA3PR 10 Dr N. Katzourakis



Part 3 Project (Project Report) O. Williamson

by Theorem 4.3, there exists {x1, x2, .., xn}, which is a finite ε-net for X, where ε = a. Let

Bε(xk) be the open ball of xk, the there exists Bε(xi) is contained in some Ck ∈ {Ci}. Since

X ⊆
n⋃

k=1

Bε(xk) ⊆
n⋃

k=1

Ck, (22)

we have a finite subcover of {Ci} on X. Hence the set is compact

(George F. Simmons , 1963).

By this theorem, on all metric spaces, we have proven a one directional version of the Heine-

Borel theorem. This can be shown using the Bolzano-Weierstrass Theorem which gives that

a closed bounded metric space is sequentially compact. This would then, by Theorem 4.4,

imply that a closed bounded metric space is compact.

From what we have proven so far, it is difficult to see how the notions of compactness and

sequential compactness could differ. An example of this is the product space {0, 1}[0,1], a

type of topological space. Using Tychonoff’s theorem, this can be proven to be compact.

Then, using a method similar to Cantor’s diagonalisation argument explained in the next

section, it can be found that every subsequence is infinite, therefore it has no convergent

subsequneces and is not sequentially compact (Lynn A. Steen and J. Arthur Seebach, Jr ,

1970).

5 The Arzelà-Ascoli Theorem

Following a considerable excursion into the nature of compactness, we arrive at the Arzelà-

Ascoli Theorem, only to find that we have already proven a large part of it. To begin with,

we shall state the theorem.

Theorem 5.1 (The Arzelà-Ascoli Theorem). A family of functions F on a metric space,

X, is compact if and only if F is bounded, closed and equicontinuous

(George F. Simmons , 1963).

The Heine-Borel theorem, states that every F is closed and bounded if and only if it is

compact. It remains it to prove that if F is compact, it is equicontinuous and that if F is

equicontinuous, it is compact. We begin with the former, as it requires only the definitions

of compactness, equicontinuity and an appropriate ε-net.

Proof. First, we assume that F is compact and let ε > 0 be given.

Recall that F ⊆ C[a, b] is equicontinuous if and only if

∀x0 ∈ [a, b], ∀ε > 0, ∃ δ = δ(x, ε) > 0 : |x− x0| < δ (23)

⇒ |f(x)− f(x0)| < ε,∀f ∈ F , (24)
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which is the form we aim to show the family of functions to be in.

As F is compact and so is totally bounded, we can find an (ε/3)-net, {f1, f2, . . . , fn} ∈ F ,

where each fi is uniformly continuous. Now define δ to be the to be the minimum of

{δ1, δ2, . . . , δn}. If we have f ∈ F and choose fk such that

‖f − fk‖ < ε/3, (25)

then

d(x, x′) < δ (26)

⇒ |f(x)− f(x′)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(x′)|+ |fk(x′)− f(x′)| (27)

< ε/3 + ε/3 + ε/3 = ε. (28)

This being the condition for equicontinuity, hence this direction is proven

(George F. Simmons , 1963).

In order to prove that equicontinuity of a closed bounded F implies its compactness, we

will first motivate a method used in the proof, Cantor’s diagonalisation argument.

Lemma 6 (Cantor’s Diagonalisation Argument). Consider the set T of all infinite sequences

of binary digits, i.e.

T = T1, T2, . . . , Tn . . . , (29)

such that ∀a ∈ Tn, a = 0 or a = 1.

If S1, S2, . . . , Sn, . . . are arbitrary, unique enumerations for Tn, then there will always exist

an element S ∈ T which does not correspond to any Sn in the enumeration. To illustrate

this, we construct an enumeration as such, noting the highlighted nth digit,

S1 = {0, 0, 0, 0, 0, 0, . . . } (30)

S2 = {1,0, 1, 1, 0, 0, . . . } (31)

S3 = {0, 1,0, 1, 0, 1, . . . } (32)

S4 = {1, 1, 0,1, 1, 0, . . . } (33)

S5 = {1, 0, 0, 0,1, 1, . . . } (34)

S6 = {1, 0, 0, 1, 1,0, . . . } (35)

. . . (36)

For the resulting diagonal sequence, we can take the complementary digit to the nth digit.

We call this sequence S and can see that it differs from each Sn as, by construction, their

nth digits differ for every n. For example, S = {1, 1, 1, 0, 0, 1 . . . } for the above array.

Remark. This argument can then be used to show that T is uncountable. If we assume T

is countable, then it can be written as an enumeration S1, S2, . . . , Sn, . . . for all n ∈ N. As

we can construct the sequence S 6= Sn ∀n ∈ N, such that T is not countable
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(George F. Simmons , 1963).

The last prerequisite for this part of the proof is Caunchy’s criterion, which we will be using

to show that a sequence we construct is a convergent subsequence. We shall state this,

assuming the proof as known.

Definition. Caunchy’s Criterion

A sequence {xn} converges if and only if for every ε > 0, there exists K such that |xn−xm| <
ε when n,m > K.

We will now complete the proof of the Arezelá-Ascoli theorem.

Proof. Assume that F is equicontinuous. We will show that F is compact by showing every

sequence has a convergent subsequence.

By Caunchy’s criterion, we can say that it is enough to show that every sequence in F has

a Caunchy subsequence. If we take a subset S1 of F such that

S1 = {f11 , f12 , f13 , . . . }. (37)

As we have assumed that F is bounded, then there exists an M such that |f | ≤M ∀f ∈ F .

Now, if we consider the sequence {f1j (x2)}, we can say that it is bounded, so it has a

convergent subsequence by the Bolzano-Weierstrass theorem. Let S2 = {f21 , f22 , f23 , . . . }
be a subsequence of S1 such that {f2j (x2)}. Similarly, we can now consider the sequence

{f2j (x3)}, such that S3 = {f31 , f32 , f33 , . . . } is a subsequence of S2 and this process can

continue, in order to construct an array, like in Cantor’s diagonalisation argument, as fol-

lows:

S1 = {f11 , f12 , f13 , . . . } (38)

S2 = {f21 , f22 , f23 , . . . } (39)

S3 = {f31 , f32 , f33 , . . . } (40)

. . . (41)

Si = {fi1 , fi2 , fi3 , . . . } (42)

. . . , (43)

where each Si is a subsequence of the one above it. Take the diagonal subsequence of Si,

S, such that S = {f11 , f22 , f33 , . . . } and for simplicity, let S = {f1, f2, f3, . . . }. Then the S

differs from every Si and the sequence {fn(xi)} is convergent (George F. Simmons , 1963).

As a subsequence such as S can be found like this for any arbitrary sequence in F , we

only need to show that S is a Caunchy sequence. Here, we can finally use the remaining

assumption of equicontinuity.

Let ε > 0. As F is equicontinuous, there exists δ > 0 such that

|x− x0| < δ ⇒ |fn(x)− fn(x0)| < ε/3, (44)
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for all fn ∈ S.

If we now take a function fn(xi) in F then by our construction, ∃ fm(xi) ∈ S which differs

from fm(xi) such that

|fn(xi)− fm(xi)| < ε/3. (45)

Then we can write that

|fn(x)− fm(x)| ≤ |fm(x)− fm(xi)|+ |fm(xi)− fn(xi)|+ |fn(xi)− fn(x)| (46)

< ε/3 + ε/3 + ε/3 = ε. (47)

Hence the subsequence is Caunchy and so is convergent, meaning that F is compact, as

required

(D.H.Griffel , 1988).

At the time it was first proven, the significance of the Arzelà-Ascoli theorem was not fully

recognised. As compactness was researched more, it became seen as a key notion in analysis

and topology, with the Arzelà-Ascoli theorem to characterise it. We will see this in the next

two sections.

6 The Caunchy-Peano Existence Theorem

We will now be looking into proving important results that utalise the Arzelà-Ascoli theo-

rem, starting with the Peano-Existence theorem. This theorem proves the existence of the

solutions to a common type of initial value problem (IVP). This will, indirectly, allow use

of the Arzelà-Ascoli theorem in a much more applied manner. This type of argument will

also further motivate the study of compactness, with intent to prove the existence of the

solutions of differential equations.

Theorem 6.1 (Caunchy-Peano Theorem). Let D be an open subset of R×R and (t0, x0) ∈ D
and f : D → R a continuous function. For an explicit first order differential equation on

D,

x′(t) = f(x, x(t)) (48)

x(t0) = x0, (49)

there exists a solution, φ in a neighbourhood of t0

(Gerald Teschl , 2012).

Remark. φ is not necessarily unique, an example of this will be given after the proof.
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Peano originally proved this in 1890, before the complete proof of the Arzelà-Ascoli theorem,

using a slightly weaker version of the theorem, derived from Ascoli’s theorem in 1883. Since

Peano’s proof, there have been elementary proofs for this theorem such as that in Clifford

Gardner (1976). although our proof will be more similar to Peano’s proof, utilising the

Arzelà-Ascoli theorem (Manya Raman Sundström , 1997).

Proof. We begin be reducing the problem to one on a closed square, as f is continuous on a

neighbourhood of (x0, t0), there exists a > 0 such that f is continuous on the closed square

Q = (x, t) ∈ R : |x− c| ≤ K, |t− c| ≤ T , (50)

by the fundamental theorem of calculus. We know that φ is a solution of the IVP if and

only if it satisfies the equation

φ(x) = t0 +

∫ x

x0

f(t, φ(t))dt. (51)

We define

M = max
Q
|f(x, t)|, (52)

and denote

T1 = min{T,K/M}. (53)

Now we look to find a sequence that is uniformly bounded and equicontinuos on this interval,

in order to apply the Arzelà-Ascoli theorem. We construct the sequence {xn(t)} on [0, T1],

for each n, define

xn(t) =


c, for 0 ≤ t ≤ T1/n

c+
∫ t−T1/n
0 f(xn(s), s)ds, for T1/n < y ≤ T1.

(54)

This allows us to define xn(t) recursively, so that later we can form an equicontinuous

sequence. Firstly though, we use an induction to show that xn(t) is uniformly bounded on

[0, T1], by K such that

‖xn − c‖ ≤ K. (55)

We want to show that the above is true for any interval [0, T1]. Take the base case, [0, T1/n],

on which it is trivially true as xn(t) = c. Then we make the inductive assumption that it is

true for [0, k ·T1/n] for (0 ≤ k < n). Then we must show this holds for [k ·T1/n, (k+1)·T1/n].

By definition,

‖xn − c‖ =

∥∥∥∥∥
∫ t−T1/n

0
f(xn(s), s)ds

∥∥∥∥∥ . (56)
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As we have that M is the maximum of f(x, t) and t−T1/n bounds the integral, we can say∥∥∥∥∥
∫ t−T1/n

0
f(xn(s), s)ds

∥∥∥∥∥ ≤M · |t− T1/n| ≤M · T1 ≤ K. (57)

Hence, {xn(s)} is bounded on [0, T1].

Now we look to show the equicontinuity of {xn(t)} on [0, T − 1]. For any t1, t2 ∈ [0, T1] we

can produce the following approximations

‖xn(t1)− xn(t2)‖ =



0, if t1, t2 ∈ [0, T1/n]

‖
∫ t2−T1/n
0 f(xn(s), s)ds‖, if t1 ∈ [0, T1/n] and t2 ∈ (T1/n, T1],

‖
∫ t1−T1/n
0 f(xn(s), s)ds‖, if t2 ∈ [0, T1/n] and t1 ∈ (T1/n, T1]

‖
∫ t2−T1/n
t1−T1/n

f(xn(s), s)ds‖, if t1, t2 ∈ (T1/n, T1].

(58)

From the above, we can see that, as it is true in every case,

‖xn(t1)− xn(t2)‖ ≤M |t− s|, (59)

for any t1, t2 ∈ [0, T1] which gives us a common constant for the functions in the series

{xn(t)}, acting as the required δ for the condition of equicontinuity and proving that xn(t)

is equicontinuous.

By the Arzelà-Ascoli theorem, we can now say that {xn(t)} is compact, so there exists a

uniformly convergent subsequence, {xni}, that converges to a continuous function x∞(t) on

[0, T1] as ni → ∞. Then we can show that the function x∞(t) is the afore mentioned φ, a

solution to the posed IVP.

For a fixed t ∈ (0, T1], we can take ni to be sufficiently large, such that T1/ni < t, then, by

the definition of {xn(t)}, we have

xni(t) = c+

∫ t

0
f(xni(s), s)ds−

∫ t

0
f(xni(s), s)ds. (60)

Finally, as ni →∞ and f(x, t) is uniformly continuous, we have∫ t

0
f(xni(s), s)ds→

∫ t

0
f(x∞(s), s)ds, (61)

and also, as ∣∣∣∣∣
∫ t

t−T1/ni

f(xni(s), s)ds

∣∣∣∣∣ ≤
∫ t

t−T1/ni

(M)ds, (62)
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by the definition of M , and

M · T1/ni → 0, (63)

by the squeeze rule, ∣∣∣∣∣
∫ t

t−T1/ni

f(xni(s), s)ds

∣∣∣∣∣→ 0, (64)

as ni →∞

Evaluating these results, we have that

x∞(t) = c+

∫ t

0
f(x∞(s), s)ds. (65)

This is the solution to the IVP, showing that a solution exists, and therefore proving the

theorem

(Gerald Teschl (2012), Jishan Hu and Wei-Ping Li (2005),Rodrigo Lopéz Pouso (2012)).

In order to see that the solution is not necessarily unique, we shall take an example.

Example 1. Let f(x, t) = 25x4/5. This is continuous and bounded in x, t on −1 < x < 1,

t ∈ R. Then by the Peano Existence theorem, the IVP

x′ = (x, t), (66)

x(0) = 0, (67)

has at least one solution. Using known techniques, we solve:

x′(t) = x4/5 (68)

⇒
∫

5x−4/5 dx =

∫
1 dt (69)

⇒ 5x1/5 = t (70)

⇒ x(t) = 0 , (71)

x(t) = t5. (72)

Hence the IVP has two solutions and the solution is not unique.

The Caunchy-Peano theorem is very similar to another existence theorem, Carathéodory’s

existence theorem. Cathéodory’s theorem applies to the same class of IVPs with f defined

on a different domain and can prove the existence of solutions of IVPs with discontinuities.

We shall state, but not prove, this theorem below.

Theorem 6.2 (Catheodory’s Existance Theorem). Consider the IVP

x′(t) = f(t, y(t)), with (73)

x(t0) = x0, (74)
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on the domain

R = {(x, t)||x− x0| ≤ a, |t− t0| ≤ b}. (75)

Let f(t, x) be measurable in t for each fixed x and continuous in X for each fixed t. Then

there exists a Lebesgue-integrable m(t) such that

‖f(t, x)‖ ≤ m(t) ∀(t, x) ∈ R, (76)

then the differential equation has a solution in the neighbourhood of the initial condition

(Ruth F. Curtain and A.J. Pritchard , 1977).

In the next section, we will define measurabillity which will make this theorem somewhat

clearer although a greater understanding of measure theory would be required to formulate

the proof.

7 Kolmogorov-Riesz Compactness Theorem

In this section we will be stating and explaining the Kolmogorov-Riesz compactness the-

orem, a powerful theorem in functional analysis, which characterises the notion of total

boundedness on Lp spaces. Before we state the theorem, we must first define Lp spaces,

which will require some basic measure theory. We define measures on a ring, R, so to begin

with, we shall define a ring. These definitions will follow those in Angus E. Taylor (1958).

Definition. Ring

A nonempty class of sets R is called a ring if for every E,F ∈ R, E ∪F and E −F belong

to R

Definition. The ring is called a σ-ring if it contains the union of every countable collection

of its members.

Now we can define a measure on the ring.

Definition. Measure

On a ring R, a function µ : R→ R is a measure if and only if

1. µ(E) ≥ 0 if E ∈ R

2. µ(∅) = 0

3. If {En} is a sequence of pairwise disjoint members of R whose union is in R, then

µ

( ∞⋃
j=1

Ej

)
=
∞∑
j=1

µ(Ej). (77)
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Definition. Measure Space

A measure space is an ordered pair (X,µ) where X is a set and µ is a measure on the set

X.

The Lp spaces, with which the theorem is concerned, are spaces of measurable functions

under a the p-norm so we will also require the definitions of a measurable function and a

normed space.

Definition. Measurable function

A function f : X → R is measurable if for every real number a, the set

{x ∈ X : f(x) > a} (78)

is measurable.

Definition. Norm

A norm on a vector space V is a function defined on V with non-negative real number

values such that

1. ‖x‖ ≥ 0 ∀x ∈ V

2. ‖x‖ = 0⇔ x = 0

3. ‖ax‖ = |a|‖x‖ ∀a ∈ R

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V (the triangle inequality).

Definition. Normed space

A normed space is an ordered pair, (V, ‖ · ‖) where V is a vector space and ‖ · ‖ is a norm

on V .

Definition. p - norm

For 1 < p <∞ and f ∈ C measurable on the measure space (X,µ), we define the p-norm

as

‖f‖p =

{∫
X
|fp| dµ

}1/p

. (79)

Definition. Lp space

Let (X,µ), be a measure space. If 1 ≤ p <∞, a measurable function f is said to belong to

Lp(µ) if ‖f‖p is integrable.

Examples of Lp spaces include L0, the space of measurable functions and L2, the space of

square integrable functions. The study of such spaces has numerous applications in physics,

engineering and statistics. It is also essential to the study of the existence of solutions to

differential equations.

Recall notion of total boundedness stated previously. This allows us to state the theorem.
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Theorem 7.1 (Kolmogorov-Riesz Theorem). Let 1 < p < ∞. A subset F of LP (Rn) is

totally bounded, if and only if

1. F is bounded,

2. for every ε > 0, there exists R, such that for every f ∈ F ,∫
|x|>R

|f(x)|p dx < εp (80)

3. for every ε > 0 there exists some ρ such that, for every f ∈ F and y ∈ Rn where

|y| < ρ, ∫ n

R
|f(x+ y)− f(x)|p dx < εp (81)

(Harald Hanche-Olsen and Helge Holden , 2010).

We have now reviewed a number of notions and theorems on compactness, from those on

R to those in topological spaces. We used the Heine-Borel theorem, along with a number

of lemmas, to prove the Arzelá-Ascoli theorem. From there we proved Peano’s existence

theorem, as well as stating two more theorems deriving for the Arzelá-Ascoli theorem. This

concludes our discussion of the Arzelá-Ascoli theorem.
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