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Abstract

Quantum Mechanics was first conceived at the turn of the twentieth century, and

since has shook the foundations of modern physics. It is a radically different viewpoint

from classical physics, which works on the macroscopic scale, in contrast to quantum

mechanics’ microscopic domain. Though at first it was heavily debated by members

of the scientific communit, it is and has been both theoretically and experimentally

verified by the likes of Einstein, Heisenberg, Shrödinger, to name but a few. This being

said, it is still an incomplete theory, and has yet not been concretely proved, despite

strong experimental evidence for its truth.

The aim of this report is to introduce the field of quantum mechanics, and to in-

vestigate the notions of conservation/symmetry, familiar from classical mechanics. The

transformations we consider here are parity/space-inversion, lattice translation and time

reversal. We will build a knowledge base by analysng the operators that represent these

transformation within a quantum mechanical framework.

This paper is presented for an audience that has completed a mathematics degree

course up to and including second year. The specific feilds we draw upon include

differential equations (MA1OD1, MA2OD2, MA2PD1), linear algebra (MA2LIN), and

dynamics (MA2DY). These modules are assumed to be prior knowledge.

The main sources of information for this project are:

• An Introduction To Quantum Mechanics, D.J. Griffiths (1995), Second edition,

Pearson Education ltd., 2005,

• Modern Quantum Mechanics, J.J. Sakurai (1994), First edition, Addison-Wesley

Publishing Company inc. 1994.

which are referenced throughout. For specific pages, see the bibliography, which is found

in section 6.
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1 Fundamentals

1.1 The Wave Function

We begin by giving a basic overview of quantum theory.

The premise we are working is that, rather than the classical notion that a particle has a

determinate position x(t) at a given time t, said particle instead has an associated wave

function, Ψ(x, t), which gives the probability of finding a particle at a certain place at a

given time.

For the one-dimensional case, this is obtained by Born’s statistical interpretation (Griffiths,

1995): ∫ b

a
|Ψ(t, x)|2dx,

which obtains the probaility of finding particle between points a&b at time t, where the

integrand is known as the probability denstity function.

This is the state that a particle is in when it is not being observed, it does not have a

determinate position in space, but rather a probabilistic framework of where it is likely to

be found (Figure 1).

However, upon obvservation, ie. when a measurement is taken, this wave function ’collapses’

into an infintely high spike at the point where the particle is found to be (Figure 2).

Figure 1: Open wave function (Griffiths, 1995).

There are two main ways to interpret this new way of approaching mechanics?;

• Realists believe that the particle was actually at the point at which it was found the

whole time, and that quantum mechanics is an incomplete theory. They postulate

that there is a ’hidden variable’ as yet undiscovered, that would liquidise the inherent

indeterminacy of the field.

• The orthodox position, also known as the Copenhagen interpretation, is that the

Figure 2: Collapsed Wave Function (Griffiths, 1995)
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particle does not actually exist when it is not being observed, and that the act of

measurement ”compels the particle to assume a definite position” (Mermin, 1985).

This is currently the most widely accepted view in physics.

This probabilistic approach to mechanics may seem counter intuitive, and indeed many

physicists took an agnostic viewpoint in the early stages of the feild. That is until 1964,

when Bell experimentally showed that these two interpretations were the only options (for

details see Griffiths pg 423), annihilating agnosticism as a viable standpoint (Griffiths,

1995).

So how do we find this wave function?

Just as Newton’s laws of motion form the backbone of classical mechanics, the quantum

world finds similar structure, in the form of the time dependant Shröedinger equation?

(shown here in one spatial dimension):

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ(t, x), (1)

where ~ :=Planck’s constant, m := mass of our particle, and V :=potential term specific to

each example of particle motion. This partial differential equation, along with the statistical

interpretation, forms the fundamental foundation of quantum mechanics.

1.2 Normalisation

The first thing we must consider is a process known as normalisation. Due to the proba-

bilistic nature of the statistical interpretation, it is clear that (Griffiths, 1995),∫ ∞
−∞
|Ψ(t, x)|2 dx = 1, (2)

ie. when the integral limits are infinite, the probability of finding the particle in that region

is definite - it has to be found somewhere. This would be incompatible with Shrödinger’s

equation if it weren’t for the property that, if we have Ψ(x, t) as a solution, then AΨ(x, t) is

also a solution, where A is any complex constant (Griffiths, 1995). The trick is to pick this

constant so that equation 2 is satisfied, hence normalising the wave function. The amazing

property of the Shrödinger equation is that, once a wave function has been normalised at

time t = 0, it will stay normalised as time progresses. Let us confirm this, as without this

property the entirety of Quantum Mechanics would break down.

MA3PR 2 Dr Calvin Smith
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To start, notice how the normalisation function changes with time (Griffiths, 1995):

d

dt

∫ ∞
−∞
|Ψ(x, t)|2dx =

∫ ∞
−∞

∂

∂t
|Ψ(t, x)|2 dx, (3)

=

∫ ∞
−∞

∂

∂t
(Ψ∗Ψ) dx, (4)

=

∫ ∞
−∞

(
Ψ∗

∂Ψ

∂t
+
∂Ψ∗

∂t
Ψ

)
dx, (5)

[via product rule],

=

∫ ∞
−∞

i~
2m

(
Ψ∗

∂2Ψ

∂x2
− ∂2Ψ∗

∂x2
Ψ

)
dx, (6)

[by Shrödinger equation & compex conjugation thereof],

=

∫ ∞
−∞

∂

∂x

[
i~
2m

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)]
dx, (7)

=
i~
2m

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

) ∣∣∣∣x=∞
x=−∞

. (8)

But, for our wave function to be normalisable in the first place, we require that Ψ → 0 as

x→∞ (Griffiths, 1995). Thus, we conclude that

d

dt

∫ ∞
−∞
|Ψ(x, t)|2dx = 0,

ie. that the integral is constant in time. Hence, a normalised wave function stays normalised

as time progresses.

1.3 Expectation of Observables

So how do we approach this new way of doing things? If a particle’s position is undetermi-

nate, how do we even begin? Well, although we cannot say our particles definite position,

we can certainly say where we expect the particle to be based on its wave function. This is

given by

〈x〉 =

∫ ∞
∞

x|Ψ(x, t)|2dx (Griffiths, 1995) (9)

Note that this is not the average of many measurements on the same particle, but rather

the average of the measurements on many different particles prepared in identical states.

This distinction is crucial due to the collapsing nature of the wave function - once the first

measurement has been performed upon a particle, its wave function becomes a spike at a

particular value, and subsequent measurements will just return that same value. (Griffiths,

1995)
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We can also derive the expectation value for the momentum of our partice (Griffiths, 1995):

〈ρ〉 = m
d〈x〉
dt

, (10)

= m

∫ ∞
−∞

x
∂

∂t
|Ψ(x, t)|2dx, (11)

=
i~
m

∫ ∞
−∞

x
∂

∂x

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx, (12)

[as before],

=
i~
m

∫ ∞
−∞

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ

)
dx (13)

[via integration by parts],

= −i~
∫ ∞
−∞

(
Ψ∗

∂Ψ

∂x

)
dx, (14)

[by parts again].

These two quantities can in fact be used to generate any dynamical quantity we require,

because all dynamical quantities of interest can be expressed in terms of these two variables.

If we consider our two expectation equations in slightly different form (Griffiths, 1995), with

(ˆ) terms denoting operators:

〈x〉 =

∫ ∞
−∞

Ψ∗(x̂)Ψdx, (15)

&〈ρ〉 =

∫ ∞
−∞

Ψ∗
(
~
ı

∂

∂x

)
Ψdx, (16)

we see that the only difference between the two is the operator term between the wave

function and its complex conjugate. We can therefore conclude that, because any dynamical

observable Q can be expressed purely in terms of position and momentum, Q’s expectation

is given by

〈Q(x, ρ)〉 =

∫ ∞
−∞

Ψ∗Q

(
x̂,

~
i

∂

∂x

)
Ψdx (Griffiths, 1995), (17)

ie. we replace all the x’s & p’s in our Q formula with x̂ &
(~
i
∂
∂x

)
operators respectively,

’sandwich’ it between our wave function and its conjugate, and integrate through.

1.4 Time-Dependant Shrödinger Equation

Now, for a given particle in a particular state, how do we actually find its associated wave

function Ψ(x, t)? This is of course the basic foundation of quantum mechanics, it would be

helful to know how to obtain it. As such, we reconsider the time independant Shrödinger

equation:

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ(x, t), coupled with initial wave function Ψ(x, 0), (18)

for a given potential V (which for now, we keep unspecified for the sake of arguement). This

is a PDE of first order in t, second order in x. We therefore utilise the method of separation

MA3PR 4 Dr Calvin Smith
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of variables (Griffiths, 1995). Both the equation and the method can easily be generalised

to multiple dimensions ?, but we work here in one dimension for conciseness and clarity

So, we start out in the usual fashion, and let Ψ(x, t) = ψ(x)φ(t),

=⇒ ∂Ψ

∂t
= ψ

dφ

dt
, &

∂2Ψ

∂x2
=
d2Ψ

dx2
φ, (19)

so that Shrödinger now reads

i~ψ
dφ

dt
= − ~

2m

d2ψ

dx2
φ+ V ψφ, (20)

=⇒ i~
1

φ

dφ

dt
= − ~

2m

1

ψ

d2ψ

dx2
+ V. (21)

We now have the LHS in terms of φ only, and the RHS interms of ψ only. This can only be

the case if both sides of the equation are constant, and we label this constant E:

E := i~
1

φ

dφ

dt
=⇒ dφ

dt
= − iE

~
, (22)

&E := − ~
2m

1

ψ

d2ψ

dx2
+ V =⇒ − ~2

2m

d2ψ

dx2
+ V ψ = Eψ, (23)

we therefore now have two ODEs to solve, rather than one PDE. Equation (23) is a separable

ODE and is therefore easy deal with. Its solution is given by

φ(t) = Ce−
iEt
~ (Griffiths, 1995), (24)

for constant C.

Equation (24) is known as the time-independant Shrödinger equation, and its solution

method depends entirely on the potential V . As the only restriction on E is that it is

constant, there is an infinite set {En} of these constants, each with their own associated

separable solution ψn(x) (Griffiths, 1995). The full wave function solutions then take form

Ψn(x, t) = ψn(x)e
iEnt

~ , (25)

where the constant C has been asborbed into the ψn term. These separable solutions are

known as stationary states, named for the property that their time-dependence cancels

out under the probability density function (Griffiths, 1995). The same can be found for

position and momentum expectations 〈x〉& 〈p〉 respectively, and therefore for any dynamical

quantity (Griffiths, 1995). For example, consider the classical Hamiltonian H(x, p) = p2

2m +

V (x) for total energy. Under the transformation defined by x −→ x̂ & p −→ ~
i
∂
∂x , this

becomes the Hamiltonion operator

Ĥ = − ~2

2m

∂2

∂x2
+ V (x̂) (Griffiths, 1995), (26)

and we notice that the LHS of the time-independant Shrödinger equation is just this operator

applied to ψ, The time-dependant Shrödinger equation can therefore be written

Ĥψ = Eψ, (27)

MA3PR 5 Dr Calvin Smith
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and the expectation value of the Hamiltonian is given by (Griffiths, 1995),

〈H〉 = E

∫ ∞
-∞

ψ∗Ĥψ (28)

= E

∫ ∞
-∞
|ψ(x)|2dx, (29)

= E

∫ ∞
-∞
|Ψ(x, t)|2dx, (30)

= E [by normalisation] (31)

It can be shown that the variance of this expectation is equivalent to 0 (Griffiths, 1995).

This means that any Hamiltonian measurement on a separable solution ψ0 will definitely

return the corresponding contant E0. This puts a useful restriction on the set {En}, and

elements that satisfy this are called allowed energies (Griffiths, 1995).

Returning to our method, the way in which we construct the full general solution for our

wave function is via a linear combination of these stationary states (Griffiths, 1995):

Ψ(x, t) =
∞∑
n=1

cnΨn(x, t), (32)

=

∞∑
n=1

cnψn(x)e
−iEnt

~ (33)

with cn’s determined by Fourier’s trick, which uses the given initial wave function:

cn =

∫ b

a
ψn(x)∗Ψ(x, 0)dx (Griffiths, 1995). (34)

1.5 Dirac Notation

We now recall linear algebra, and introduce Dirac notation, along with the notion of Hilbert

Space. For N-dimensional vector spaces,

• a vector, denoted |α〉 is represented by a =

( a1
a2
...
aN

)
• The inner product of two vectors |α〉 and |β〉 is defined as

〈α|β〉 = a1b1 + a2b2 + . . .+ aNbN , a complex number, (ref)

• Linear transformations take matrix form:

|β〉 = T̂ |α〉 −→ b = Ta =


t1,1 t1,2 · · · t1,N
t2,1 t2,2 · · · t2,N

...
...

. . .
...

tN,1 tN,2 · · · tN,N



a1
a2
...

aN

 (Griffiths, 1995)

However, due to quantum vectors being infinitely dimensional, issues arise such as inner

product existence ?. We therefore only work within Hilbert space, which is defined as the

set of functions f(x) that satisfy ∫ b

a
|f(x)|2dx <∞, (35)

MA3PR 6 Dr Calvin Smith
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ie. all square-integrable functions for which normalisation is possible (Griffiths, 1995). The

vectors, |α〉, that reside in this space are known as kets, and every ket has a corresponding

bra, which is denoted

〈α| = (a∗1, a
∗
2, . . . , a

∗
n), (36)

for N dimensions, existing in bra space (Griffiths, 1995). Operators act upon kets from the

right, while upon bras from the right. These two vector spaces have a one-to-one relation,

or dual correspondance with each other, and together they make up dual space (Griffiths,

1995). The inner product is still denoted 〈α|β〉, and all the usual inner product identities

apply, namely 〈α|β〉 = 〈β|α〉∗ and that 〈α|β〉 is real.

An important result is the associative axiom, which says that, for operator Â,

(〈β|)(Â|α〉) = (〈β|Â)(|α〉), (37)

and we denote these two equivalent products as 〈β|Â|α〉 (Sakuraii, 1994).

1.6 Hermitian Operators

We can express expectation values of dynamical quantities with inner product notation:

〈Q(x, p)〉 = 〈Ψ|Q̂Ψ〉, (38)

again where Q̂ is the operator formed from Q under the transformation x −→ x̂ and

p −→ p̂ = ~
i
∂
∂x . Because measurements of observables must return real values, we have that

〈Q〉 ∈ R =⇒ 〈Q〉 = 〈Q〉∗, (39)

but as complex conjugation reverses the order of terms in inner product notation, this means

that we have

〈Ψ|Q̂Ψ〉 = 〈Q̂Ψ|Ψ〉, (40)

for all possible Ψ. Thus, all operators that physically represent observables have the prop-

erty

〈α|Q̂α〉 = 〈Q̂α|α〉, (41)

for general ket |α〉 and we define Hermitian operators as operators which satisfy this re-

quirement (Griffiths, 1995).

1.7 Eigenstates, Eigenkets and Eigenvalues

A determinate state is the situation where any Q measurement is certain to return a specific

value q (Griffiths, 1995). We have seen such a situation - the stationary states of the

Hamiltonian, and we generalise this by noting that the variance of such an expectation

would be equivalent to zero (Griffiths, 1995):

0 = σ2 =
〈
(Q̂− 〈Q〉2

〉
(42)

=
〈
Ψ|(Q̂− q)2Ψ

〉
(43)

=
〈
(Q̂− q)Ψ|(Q̂− q)Ψ, (44)
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but, as the only function whose inner product with itself is 0, we therefore have

Q̂Ψ = qΨ, (45)

which we recognise as the eigenvalue equation for operator Q̂, where Ψ is an eigenfunction

of Q̂, and q is its corresponding eigenvalue (Griffiths, 1995). Thus, we conclude that

determinate states are simply eigenfunctions (also known as eingenkets) of Q̂. For general

ket |α〉, these eigenkets are denoted |α′〉, with a′ representing the corresponding eigenvalue.

The physical situations that they represent are defined as eigenstates.

1.8 Commutation Relation

We now define the commutation relation of two operators. In general, operators do not

commute under inner products, that is that for operators Â and B̂ acting on general ket

|α〉,

〈Âα|B̂α〉 6= 〈B̂α|Âα〉. (46)

We denote the difference between these two quantities by

[Â, B̂] ≡ ÂB̂ − B̂Â, (47)

and is defined as the commutation relation between operators. If this value is equivalent

to zero, then we say that the operators commute, and that they are invariant. Invariant

operators, Q̂, have the property

Â†Q̂Â = Q̂, and that Q̂|α′〉 (48)

for Â† defined as the dual corresponding bra space operator to Â, which operates on general

bras from the right; Â|α〉 = 〈α|Â†.

1.9 Symmetry Operators

We represent transformations like parity or lattice translation with symmetry operators

which we define as

ξ̂ = 1− iε

~
Ĝ, (49)

where Ĝ is defined as the Hermitian generator of ξ̂ (Sakuraii, 1994). If the Hamiltonion

operator is invariant under ξ̂, ie. if

ξ̂†Ĥξ̂ = Ĥ (50)

=⇒ [Ĝ, Ĥ] = 0, (51)

then it follows from the Heisenberg equation of motion that

dG

dt
= 0, (52)

ie. that Ĝ is a constant of motion ?.

MA3PR 8 Dr Calvin Smith
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Now, consider an eigenvalue of g′. If a system is in the corresponding eigenstate represented

by |g′〉 at a time, t0, then under the time evolution operator, which is defined by

|g′, t0; t〉 = Û(t, t0)|g′〉 (Sakuraii, 1994), (53)

then the ket we obtain is also an eigenket of Ĝ, with the same eigenvalue g′ (Sakuraii,

1994). This is confirmed by the fact that Ĝ and time evolution commute:

Ĝ|g′, t0; t〉 = Ĝ[Û(t, t0)|g′ (54)

= Û(t, t0)Ĝ|g′〉 (55)

= g′[Û(t, t0)|g′〉]. (56)

1.10 Unitary Operators

If a symmetry operator, Û , satisfies the condition that

Û †Û = Û Û † (57)

= Î , (58)

where Î is the identity operator, then we define Û as a unitary operator.

1.11 Degeneracies

The set of an operator’s eigenvalues is known as the operator’s spectrum. We define a

degenerate spectrum as a spectrum for which there is not a one-to-one correspondence

between the eigenvalues and the corresponding eigenfunctions ?.

An important result on degeneracies is that, if

[Ĥ, ξ̂] = 0, (59)

ie. if Ĥ and ξ̂ commute, and we have |n〉 as an energy eigenket with corresponding eigen-

value, En, then ξ̂|n〉 is also an energy eigenket (Sakuraii, 1994). To prove this we apply

the Hamiltonian operator to ξ̂|n〉:

Ĥ(ξ̂|n〉) = ξ̂Ĥ|n〉 (60)

= En(ξ̂|n〉) (Sakuraii, 1994). (61)

If |n〉 and ξ̂|n〉 represent different states, then we have degeneracy ?.

1.12 Quantum Mechanical Tunnelling

We now introduce the Heisenberg Uncertainty Principle, which asserts that the standard

deviations of a particle’s position and momentum expectation values, σx and σρ respectively,

satisfy the inequality

σxσρ ≥
~
2

(Griffiths, 1995), (62)

MA3PR 9 Dr Calvin Smith
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Figure 3: Left hand and right hand coordinate systems ?

which we take as axiom (for proof, see Griffiths pg 114-116). We see from equation (62)

that, if we decrease σx by a substantial amount, in order to be more certain of a particle’s

position, then σρ must increase in order for (61) to still hold.

A result of this is quantum tunnelling. This is when a particle passes through a higher finite

energy barrier than classical mechanics would allow.

However, this does not occur if said energy barrier is infinite.

2 Space Inversion/Parity

The Parity operator, which we denote π̂, represents the space inversion transformation,

which effectively takes a right hand coordinate system and transforms it into a left hand

system (Figure 3). For general ket |α〉, the space inverted state is denoted π̂|α〉, in usual

operator fashion.

2.1 Parity Observable Expectations

Now, for the transformation we are defining, we require that

〈α|π̂†x̂π̂|α〉 = −〈α|x|α〉, (63)

ie. that the expectation of position takes the opposite sign. This necessitates the require-

ment that

π̂†x̂π̂ = -x̂, (64)

that is that x̂ and π̂ must anticommute:

x̂π̂ = -π̂x̂. (65)

We now claim that the expectation of position under parity takes the form

π̂|x′〉 = eiδ|-x̂′〉,dx (66)

where eiδ is defined as a phase factor. To prove this assertion, we apply x̂π̂ to our eigenket

(Sakuraii, 1994):

x̂π̂|x′〉 = -π̂x̂|x′〉 (67)

= (-x′)π̂|x′〉, (68)
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Figure 4: Parity followed by translation, and vice versa (Sakuraii, 1994)

and therefore see that π|x′〉 is also an eigenket of x̂, with eigenvalue -x′, so it must be the

same as our position eigenket, |-x′〉, up to a phase factor.

If we set eiδ, without loss of generality, we have that

π̂2|x′〉 = |x′〉, (69)

=⇒ π̂2 = 1 (70)

which implies that π̂ is Hermitian, and has the property that

π̂-1 = π̂† = π̂, (71)

with eigenvalues ±1 (Sakuraii, 1994).

For momentum, we also expect our expectation value to be opposite in sign under space

inversion (Sakuraii, 1994). To show this, we consider how parity behaves when parity is

combined with translation (Figure 4). We see that applying followed by parity is equivalent

to applying parity followed by opposite translation.

Mathematically, this is formulated as the requirement that (Sakuraii, 1994),

π̂Λ̂(dx′) = Λ̂(-dx′)π̂, (72)

where Λ(λ) is the translation operator, e
iλp̂
~ (Sakuraii, 1994). It follows that

π̂

(
1− ip̂(dx′)

~

)
π̂† = 1 +

ip̂(dx)

~
, (73)

from which it is clear that

[π̂, p̂] = 0, (74)

ie. that π̂ and p̂ commute, so that

π̂p̂π̂ = -p̂. (75)

With these two expectation values, we can construct the expectation of any dynamical

observable, Q̂(x, p), in the manner discussed in section 1.
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2.2 Wave Function Behaviour Under Parity

For our wave function, ψ(x, t), for a state represented by |α〉, which we henceforth denote

by

ψ(x′) = 〈x′|α〉. (76)

When parity is applied, our wave function takes the form

ψ(-x′) = 〈-x′|π̂|〉 = 〈-x′|α〉 (Sakuraii, 1994) (77)

If we have |α〉 as an eigenket of parity with eigenvalues ±1, then

π̂|α〉 = ±|α〉 (Sakuraii, 1994), (78)

and its corresponding wave function is

〈x′|π̂|α〉, (79)

and we say that the state represented by |α〉 is even or odd under parity respectively, based

on the sign choice its wave function takes in the equation

ψ(-x′) = ±ψ(x′). (80)

However, because momentum and parity anticommute, a momentum eigenket will not nesse-

carily be an eigenket of parity (Sakuraii, 1994).

For the hamiltonian operator, we have the following theorem (Sakuraii, 1994):

For [Ĥ, π̂] = 0 (Ĥ and π̂ commute) and Ĥ|n〉 = En|n〉 (|n〉 is a non-degenerate eigenket of

Ĥ with eigenvalue En), |n〉 is also an eigenket of the parity operator, π̂.

To prove this theorem (Sakuraii, 1994), first notice that 1
2(1 ± π̂|n〉 is a parity eigenket

with eigenvalues ±1.

But this is also an energy eigenket, with eigenvalue En, and this means that |n〉 and 1
2(1±

π̂)|n〉 must represent the same state (REF). Otherwise, we would have a degeneracy that

contradicts our assumption. We therefore conclude that |n〉 must also be an eigenket of

parity, with corresponding eigenvalues ±1.

2.3 Symmetric Double Well Potential

Figure 5 shows the symmetric double wave potential for the two lowest lying states. We

denote the symmetric case |S〈 and |A〉.

It can be shown (see Sakurai pg 257 for details), and indeed inferred from the figure, that

EA > ES . (81)

We can form the kets:

|R〉 =
1√
2

(|S〉+ |A〉) (82)

&|L〉 =
1√
2

(|S〉 − |A〉), (83)
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Figure 5: Symmetric Double Well Potential (Sakuraii, 1994)

Figure 6: Symmetric Double Well Potential with infinite energy barrier (Sakuraii, 1994)

whose wave functions are respectively concentrated in the right hand well and left hand

well (Sakuraii, 1994). Now, under parity, |R〉 and |L〉 are unchanged, ie. they are not

π̂ eigenstates, and they are also not eigenstates of Ĥ (Sakuraii, 1994). To see this, we

consider a system represented by |R〉 at t = 0 (Sakuraii, 1994). By applying the time

evolution operator, we see that at a later time, δt, we have

|R, t0 = 0; t〉 =
1√
2

(
e-
iESt

~ |S〉+ e-
iEAt

~ |A〉
)

(84)

=
1√
2
e
−iESt

~

(
|S〉+ e

-(EA−ES)t

~ |A〉
)
. (85)

When time, T ≡ 2π~
2(EA−ES) , is subbed into this equation, the system evolves to a point

where it is represented by |L〉 (REF). At time t = 2T , the system has reverted back to

|R〉 state. We therefore have oscilatory behavior, with angular frequency ω = EA−ES
~ .If we

make the barrier in between the wells in finite (Figure 6), this behaviour ceases, suggesting

that the oscillation is a result of quantum tunneling. In this case, a state represented by |R〉
will stay unchanged as time progresses, ie. oscillation time is equivalent to ∞ (REF). This

example shows a state which is antisymmetrical despite the symmetry of the Hamiltonian

under space inversion - where there is degeneracy, symmetry is not necessarily observed by

|S〉 and |A〉.

2.4 Parity Selection Rule

We now claim that, when π̂|α〉 = εα|α〉 and π̂|β〉 = εβ|β〉, ie. if |α〉 and |β〉 are parity

eigenvalues with respective eigenvalues εα and εβ, we have that εα = -εβ. (Sakuraii, 1994)
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Figure 7: Potential V (x±a) = V (x) for finite energy barriers between lattice sites (Sakuraii,

1994)

Figure 8: Potential V (x ± a) = V (x) for infinite energy barriers between lattice sites

(Sakuraii, 1994)

To prove this assertion, we notice that

〈β|π̂-1π̂x̂π̂-1π̂|α〉 = 〈β|x̂|α〉 (86)

= εαεβ (-〈β|x̂|α〉) , (87)

which cannot happen for finite nonzero 〈β|x̂|α〉, unless εα and εβ are sign opposite.

This means that the parity odd operator, x̂, connects states of opposite parity. this can

in fact be generalised for any parity odd operator (REF), and similarly for parity even

operators connecting states of the same parity.

3 Lattice Translation

3.1 Lattice Translation Operator

Lattice translation is the operator equivalent to the classical equivalent of the same name.

Now, consider a one-dimensional a-periodic potential, V (x±a) = V (x) for (a) finite energy

barriers between lattice sites (Figure 3), and (b) infinite energy barriers (Figure 4) (Sakuraii,

1994).

The lattice translation operator, τ̂(l), has the property that (Sakuraii, 1994):

τ̂(l)xτ̂(l) = x+ l (88)

=⇒ τ̂ †(a)V (x)τ̂(a) = V (x+ a) (89)

= V (x) in our case. (90)

Kinetic energy is invariant under translation (Sakuraii, 1994), and therefore the Hamilto-

nian satisfies

τ̂ †(a)Hτ̂(a) = H, (91)
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and this together with the fact that τ(a) is unitary (show & ref) implies that

[Ĥ, τ̂(a)] = 0. (92)

This means that the matrix representations of ˆτ(a) and Ĥ can be diagonalised simultane-

ously (ref). However, though τ̂ is unitary, it is not Hermitian, and we therefore expect it’s

eigenvalues to be complex numbers of modulus 1 (Sakuraii, 1994).

We first consider case (b), where the energy boundaries between lattice sites are infinite,

and there is no possibility of quantum tunnelling. We denote |n〉 as the ket corresponding

to the n’th lattice site. This is an eigenket of total energy, and we denote the corresponding

eigenvalue as E0:

Ĥ|n〉 = E0|n〉. (93)

It’s wave function 〈x′|n〉 is only finite in the lattice site it is localised in (Sakuraii, 1994).

However, note that all lattice sites are identical when they are assumed to be distinct, and

therefore all of these states have the same corresponding eigenvalue E0, there therefore

exists an infinitefold degeneracy (Sakuraii, 1994). Now, notice that

τ̂(a)|n〉 = |n+ 1〉, (94)

which means that |n〉 is not an eigenket of the lattice translation operator, despite the fact

is it an eigenket of the Hamitonian. This fits in with out earlier theorem on symmetry and

degeneracy. For symmetry, we must find a simultaneous eigenket of Ĥ and τ̂(a) (Sakuraii,

1994).

We can accomplish this, as before, by forming the linear combination ,

|θ〉 =
∞∑

n=−∞
einθ|n〉, (95)

for θ ∈ [−π, π] is a real paramater (Sakuraii, 1994). Due to the fact that |n〉 is an n-

independant energy eigenket with corresponding θ-independant eigenvalue. We then apply

τ(a) to show that

τ(a) =
∞∑

n=−∞
einθ|θ〉 =

∞∑
n=−∞

ei(n−1)θ, (96)

= e−iθ|θ〉 (97)

ie. that |n〉 is also an eigenket of τ̂(a).

We now approach the (a) case, a much more physically realistic situation. As before, we

represent the n’th lattice site as localised ket |n〉, with the property defined by equation 53

still holding. But now, due to the fact the energy barriers between sites are not infinite,

there is a possibility of quantum tunnelling occurring, ie. that the wave function 〈x′|n〉
could be finite in lattice sites other than that represented by |n〉. For the |n〉 basis, the

Hamiltonian matrix has equal diagonal elements due to τ(l) invariance:

〈n|H|n〉 = E0 (98)
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where E0 is still n-independant (Sakuraii, 1994). Due to the possibility of tunnelling, this

matrix may not be completely diagonal. However if we set the energy barriers high, we

can legitimately assume that non-diagonal elements are negligible (Sakuraii, 1994). We

formulate this mathematically as the requirement that

〈n′|Ĥ|n〉 6= 0⇐⇒ n′ = 1 or n′ = n+ 1 (99)

This is known as the tight binding approximation. We now, as before, define the linear

combination

|θ〉 =

∞∑
n=−∞

einθ|n〉, (100)

which is clearly a τ(l) eigenket for energy, by the same arguement as before. To check for

energy, we apply Ĥ (Sakuraii, 1994):

Ĥ
∑

einθ|n〉 = E0

∑
einθ|n〉 − 4

∑
einθ|n+ 1〉 − 4

∑
einθ|n− 1〉, (101)

[for the substitution −4 = 〈n± 1|Ĥ|n〉],

= E0

∑
einθ|n〉 − 4

∑(
einθ−iθ + einθ+iθ

)
|n〉, (102)

= (E0 − 24 cosθ)
∑

einθ|n〉, (103)

and we see that our energy eigenket is now θ-dependant. As 4 becomes finite, our previous

degeneracy no longer applies (Sakuraii, 1994), and we therefore have a continuous spectrum

of eigenvalues in the interval [(E0 − 24)(E0 + 24)].

3.2 Wave Function Behaviour Under Lattice Translation

We now investigate the behavior of a wave function under lattice transformation. For the

lattice translated state τ̂(a)|θ〉, we have the wave function

〈x′|τ̂(a)|θ〉 = 〈x′ − a|θ〉 REF (104)

This, together with our earlier substitution, results in

〈x′|τ̂(a)|θ〉 = e−iθ〈x′|θ〉, (105)

=⇒ 〈x′ − a|θ〉 = 〈x′|θ〉e−iθ (Sakuraii, 1994). (106)

To solve this equation we set

〈x′|θ〉 = eikx
′
uk(x

′) (107)

with θ = ka, for a-periodic function uk(x
′) (Sakuraii, 1994). Thus, we see that the wave

function of |θ〉, eigenket of τ̂ can be written in the form of a product between plane-wave

eikx
′

and an a-periodic function. This result is known as Bloch’s Theorem, and it holds

even if the tight binding approximation is lifted (Sakuraii, 1994).

Now, having established our previous result, we now see that as we vary θ in the range

[−π, π], our k (≡ θ
a) varies from −π

a to π
a , and the energy eigenvalue is now k-dependant:

E(k) = E0 − 24 cos(ka), (108)

MA3PR 16 Dr Calvin Smith



Part 3 Project (Project Report) CM Hughes

which we also notice is independant of the shape of our potential when the tight binding

approximation is applied (Sakuraii, 1994). Due to quantum tunnelling, the infinitefold

degeneracy is lifted entirely (Sakuraii, 1994), and our allowed energies form a continuous

spectrum in the range [(E − 24), (E + 24)], which is known as the Brillouin Zone (Saku-

raii, 1994).

4 Time Reversal

4.1 Antiunitary Operators

Before we can consider the time reversal, or reversal of motion operator, we must first

establish some important results. Consider the general symmetry operations, for unitary

operator Û ,

|α〉 −→ |α̃〉 = Û |α〉, and |β〉 −→ |β̃〉 = Û |β〉. (109)

For unitary operations, such as parity or lattice translation, inner products are preserved

(Sakuraii, 1994), ie that

〈β̃|α̃〉 = 〈β|α〉. (110)

This is due to the fact that if Û is unitary, then

Û〈β|α〉 = 〈β|Û †Û |α〉 (111)

= 〈β|α〉. (112)

However, time-reversal is not unitary (Sakuraii, 1994), and this means that this property

does not hold. We therefore impose the slightly weaker restriction:

|〈β̃|α̃〉| = |〈β|α〉|, (113)

whose non-trivial satisfaction implies that

〈β̃|α̃〉 = 〈β|α〉∗ (114)

= 〈α|β〉, (115)

and if this is the case we define our transformation as antiunitary, with Û defined as the

corresponding antiunitary operator (Sakuraii, 1994). If 〈β̃|α̃〉 6= 〈β|α〉∗, but the operator

satisfies

Û (c1|α〉+ c2|β〉) = c1Û |α〉+ c2Û |β〉, (116)

for constants c1 and c2, then we say that Û is antilinear (Sakuraii, 1994). Note that, for

antilinear operators, we avoid bra operations, because Dirac’s ket and bra notation was

intended for use with linear operators, not antilinear (Sakuraii, 1994). However, we can

still use triple inner product notation, as long as we define this as, for antilinear operator Ŝ

〈β|Ŝ|α〉 = (〈β|)(Ŝ|α〉|), (117)

6= (〈β|Ŝ)(|α〉) (Sakuraii, 1994), (118)
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Now, antiunitary operators can be written in the form

Ŝ = ÛK̂, (119)

ie. as the product of a unitary operator, Û , and the complex conjugation operator, K̂

(Sakuraii, 1994). The complex conjugation operator has the property that, for general ket

|α〉:

K̂c1|α〉 = c∗1K̂|α〉 (Sakuraii, 1994), (120)

and therefore it follows that under the complex conjugation operation, for corresponding

|α〉 eigenvalue a′,

|α〉 =
∑
a′

|a′〉〈a′|α〉 −→ |α̃〉 =
∑
a′

〈a′|α〉∗K̂|α〉 (121)

=
∑
a′

〈a′|α〉|a′〉. (122)

This property allows us to confirm our earlier equation:

|α〉 −→ |α̃〉 =
∑
a′

〈a′|α〉∗ÛK̂|a′〉, (123)

=
∑
a′

〈a′|α〉∗Û |a′〉, (124)

=
∑
a′

〈a′|α〉Û |a′〉. (125)

Similarly,

|β〉 =
∑
a′

〈a′|β〉∗Û |a′〉 ←→ |β̃〉 =
∑
a′

〈a′|β〉〈a′|Û∗〉, (126)

with ←→ denoting dual correspondance, and therefore the inner product of |β̃〉 and |α̃〉 is

given by

〈β̃|α̃〉 =
∑
a′′

∑
a′

〈a′′|β〉〈a′′|Û †Û |a′〉〈α|a′〉, (127)

=
∑
a′

〈α|a′〉〈a′|β〉 (128)

= 〈α|β〉 (129)

= 〈β|α〉∗, (130)

so our requirements hold. For our purposes, we need only consider transformations that are

unitary or antiunitary (Sakuraii, 1994).

4.2 Time Reversal Operator

We now turn to the time reversal operator, denoted Θ̂. Let us first consider the classical

situation that this operator represents. Figure 7 shows a particle halting its motion at time

t = 0, and reversing its trajectory along the same path as before.
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Figure 9: Classical time reversal representation (Sakuraii, 1994)

This is mathematically formulated by the requirement that, if we have x(t) as a solution to

mẍ = −5 V (x) (131)

Then we also have -x(t) as a possible solution (Sakuraii, 1994).

For the quantum sitiuation, our Shrödinger equation reads

i~
∂ψ

∂t
=

(
− ~2

2m
5 +V̂

)
ψ. (132)

It is clear from the first order time derivative that ψ(x, t) is not a solution, however complex

conjugation of our Shrödinger equation reveals ψ∗(x,−t) as a solution (Sakuraii, 1994). We

therefore conclude that applying the time reversal operator to a wave function is equivalent

to taking its complex conjugate:

Θ̂ψ = Θ̂〈x′|α〉 (133)

= 〈x′|α〉∗. (134)

So, let us now analyse the actual behaviour of the time reversal operator, Θ̂. Consider the

time reversed system represented by

|α〉 −→ Θ̂|α〉, (135)

given for an initial time t = 0. At a slightly later time, δt, our system is found in the state

represented by

|α, t0 = 0; t = δt〉 =

(
1− iH̄

~
δt

)
|α〉, (136)

for Ĥ denoting the Hamiltonion operator that defines time reversal (Sakuraii, 1994). First,

we subject |α〉 at t = 0 to the time reversal operator:

Θ̂|α, t0 = 0; t = δt〉 = Θ̂

(
1− iH̄

~
δt

)
|α〉, (137)

=

(
1− iH̄

~
δt

)
Θ̂|α〉, if motion is symmetrical. (138)

For symmetrical motion in time, this must hold for any ket, |γ〉, ie. we must have the

identity (Sakuraii, 1994):

−iĤΘ̂|γ〉 = Θ̂iĤ|γ〉. (139)
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Now, if Θ̂ is unitary, it follows from here that

−ĤΘ̂ = Θ̂Ĥ, (140)

which implies that an energy eigenket with corresponding eigenvalue E0 would satisfy the

condition

ĤΘ̂|n〉 = −Θ̂Ĥ|n〉 (141)

= (−En)Θ̂|n〉, (142)

ie. that Θ̂|n〉 is an energy eigenket with corresponding eigenvalue En (Sakuraii, 1994).

This is a clear contradiction, and to see this consider a free particle (for details, see Griffiths

section 2.4). The lowest energy that it can possibly have is zero (representing the particle

at rest (Sakuraii, 1994). this means that the (−∞, 0) of the En spectrum would have to be

discarded, and this issue forces us to draw the conclusion that the time reversal operator

must not be unitary.

On the other hand, if Θ̂ is antiunitary, we instead have the situation;

Θ̂Ĥ = ĤΘ̂. (143)

This equation does not to lead to the contradiction found above, and the solutions it admits

are physically sensible. We therefore take the time reversal operator to be antiunitary

(Sakuraii, 1994).

5 Conclusion

We have seen the that the operators that represent quantum mechanical symmetry trans-

formation behave very differently to their classical counterparts. This is due to the inherent

indeterminacy of the field, discussed in section 1.

This radical shift in physics is extremely counter-intuitive. Though it has not been con-

cretely proved as yet, it has strong support from experimental evidence and theoretical logic

alike, and though we have only sratched the surface of the feild in this paper, the author

hopes that it will initiate the reader into this new way of doing things.
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Modern Quantum Mechanics, pg 255, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 255-256, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 256, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 257, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 257, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 257, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 257, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 258, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 259-260, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 261, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 261, Addison-Wesley Publishing Company inc., 1994
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Modern Quantum Mechanics, pg 261, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 262, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 263, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 264, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 264, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 265, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 268, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 269, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 269, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 269, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 273, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 273, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 269, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 269, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 271, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 267, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 266, Addison-Wesley Publishing Company inc., 1994
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Modern Quantum Mechanics, pg 271-272, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 272, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 272, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 272, Addison-Wesley Publishing Company inc., 1994

Modern Quantum Mechanics, pg 273, Addison-Wesley Publishing Company inc., 1994
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