
Optimizing The Linux Scheduler For Performance.

Constanza Madrigal Reyes and Ismael Lizárraga González

May 5, 2017

Abstract

The CPU scheduling is the basis of multiprogrammed operating systems. By switching the
CPU among processes, the operating system can make the computer more productive. The
scheduler controls the way processes are managed in the operating system. In this project
we analyze the behavior of the Linux kernel by changing the kernel values that manage the
scheduling process. We plan to analyze and evaluate the impact that modifying the kernel
values has on performance. To implement this analysis, we started by modifying kernel values
that after analysis, we thought would impact on a sample pi program test by Phoronix Test
Suite. Then, after running some tests and using a genetic algorithm, we plan to determine
which kernel values have a more significant impact on the pi calculation performance.

To measure performance, we use the result of our Phoronix Tests, that is the time in
seconds that the benchmark takes to calculate 8,765,4321 digits of pi using the Leibniz formula.
Performing this calculation involves a special case of a general series expansion for the inverse
tangent function.

1 Introduction
Scheduling is the job of allocating CPU time to different tasks within an operating system. Linux
supports preemptive multitasking, this means that the process scheduler decides which process
runs and when.

Balance performance across different computer configurations is one challenge in modern operating
systems.Linux has two separate process-scheduling algorithms. One is a time sharing algorithm for
fair, preemptive scheduling among multiple processes. The other is designed for real-time tasks,
where absolute priorities are more important than fairness.

If a Linux system performs similar tasks in a regular manner, it could be useful to implement
optimizations to the Linux scheduler to optimize the performance of those tasks. In this project,
we are going to analyze and evaluate the impact of changing the kernel values on the performance
of the calculation of 8,765,4321 digits of pi using the Leibniz formula measuring the time that the
system takes to perform the calculation.

2 Theoretical Framework

2.1 Process Scheduler
The Linux kernel is responsible for controlling the way that processes are managed on the system.
The process scheduler decides which task to run next. It is responsible for best using system
resources to guarantee that multiple tasks are being executed simultaneously. This makes it a core
component of any multitasking operating system.

2.2 Basics concepts related to scheduling
Preemptive multitasking: where the scheduler decides when a process is suspended. This forced
suspension is called preemption. UNIX systems have been providing preemptive multitasking since
the beginning.
Timeslice: the time period for which a process will be running before it is preempted is defined
in advanced. Represents the amount of processor time that is provided to each process.

1



Process Priority: Processes are evaluated by the scheduler according to their priority. Each
process is given a value to which it is "allowed" to run on a processor.
Latency: Delay between the time a process is scheduled to run and the actual process execution.
Granularity: The relation between granularity and latency can be expressed by (lat/rtasks) −
(lat/rtasks/rtasks) where lat stands for latency and rtasks is the number of running tasks.

2.3 Scheduling Policies
The Linux kernel supports the following scheduling policies:
SCHEDSamp_FIFO : Scheduling policy designed for special time-critical applications. It uses
the First In-First Out scheduling algorithm.
SCHED_BATCH : Scheduling policy designed for CPU-intensive tasks.
SCHED_IDLE : Scheduling policy intended for very low prioritized tasks.
SCHED_OTHER : Default Linux time-sharing scheduling policy used by the majority of pro-
cesses.
SCHED_RR : Similar to SCHED_FIFO, but uses the Round Robin scheduling algorithm.

2.4 The sysctl Interface
This interface is used for examining and changing kernel parameters at runtime. With this interface
you can change the default behavior of the task scheduler by the access to variables that this
interface provides.
The values that we modify during this project are:

• kernel.sched_latency_ns

• kernel.sched_migration_cost_ns

• kernel.sched_min_granularity_ns

• kernel.sched_nr_migrate

• kernel.sched_rr_timeslicems

• kernel.sched_rt_periodus

• kernel.sched_rt_runtimeus

• kernel.sched_schedstats

• kernel.sched_shareswindowns

• kernel.sched_timeavgms

• kernel.sched_tunablescaling

• kernel.sched_wakeupgranularityns

2.5 Calculating Pi Using the Leibniz Formula
As we mentioned earlier, our performance is measure according to the Sample Pi Program bench-
mark provided by Phoronix Test Suite. This test runs a simple C++ program that calculates
8,765,4321 digits of pi using the Leibniz formula. This formula states that:

1− 1
3 + 1

5 − 1
7 + 1

9 − ... = π
4 .

This series is a special case of a more general series expansion for the inverse tangent function.

2



3 Genetic Algorithm
Genetic Algorithms (GA’s) are adaptive heuristic search algorithms based on the evolutionary
ideas of natural selection and genetics. As such they represent an intelligent exploitation of a
random search used to solve optimization problems. Although randomised, GA’s are by no means
random, instead they exploit historical information to direct the search into the region of better
performance within the search space. The basic techniques of the GA’s are designed to simulate
processes in natural systems necessary for evolution, specially those follow the principles first laid
down by Charles Darwin of "survival of the fittest.". Since in nature, competition among individ-
uals for scanty resources results in the fittest individuals dominating over the weaker ones.

Were invented to mimic some of the processes observed in natural evolution. Many people,
biologists included, are astonished that life at the level of complexity that we observe could have
evolved in the relatively short time suggested by the fossil record. The idea with GA is to use this
power of evolution to solve optimization problems. The father of the original Genetic Algorithm
was John Holland who invented it in the early 1970’s.

GA’s simulate the survival of the fittest among individuals over consecutive generation for
solving a problem. Each generation consists of a population of character strings that are analogous
to the chromosome that we see in our DNA. Each individual represents a point in a search space
and a possible solution. The individuals in the population are then made to go through a process of
evolution. They are based on an analogy with the genetic structure and behavior of chromosomes
within a population of individuals using the following foundations:

• Individuals in a population compete for resources and mates.

• Those individuals most successful in each ’competition’ will produce more offspring than
those individuals that perform poorly.

• Genes from ‘good’ individuals propagate throughout the population so that two good parents
will sometimes produce offspring that are better than either parent.

• Thus each successive generation will become more suited to their environment.

3.1 Implementation Details
After an initial population is randomly generated, the algorithm evolves the through three opera-
tors:

1. selection which equates to survival of the fittest;

2. crossover which represents mating between individuals;

3. mutation which introduces random modifications.

3.1.1 Selection Operator

The key idea if to give preference to better individuals, allowing them to pass on their genes to the
next generation. The "goodness" of each individual depends on its fitness which may be determined
by an objective function/ fitness function or by a subjective judgment.

3.1.2 Crossover Operator

It is the prime distinguished factor of GA from other optimization techniques, two individuals are
chosen from the population using the selection operator. A crossover site along the bit strings is
randomly chosen and the values of the two strings are exchanged up to this point: If S1=000000 and
s2=111111 and the crossover point is 2 then S1’=110000 and s2’=001111. The two new offspring
created from this mating are put into the next generation of the population and by recombining
portions of good individuals, this process is likely to create even better individuals.

3



3.1.3 Mutation Operator

With some low probability, a portion of the new individuals will have some of their bits flipped.
Its purpose is to maintain diversity within the population and inhibit premature convergence. The
mutation alone induces a random walk through the search space. Mutation and selection (without
crossover) create a parallel, noise-tolerant, hill-climbing algorithms.

3.1.4 Effects of Genetic Operators

• Using selection alone will tend to fill the population with copies of the best individual from
the population.

• Using selection and crossover operators will tend to cause the algorithms to converge on a
good but sub-optimal solution

• Using mutation alone induces a random walk through the search space. Using selection and
mutation creates a parallel, noise-tolerant, hill climbing algorithm

The Algorithm
1. Randomly initialize population(t)

2. Determine fitness of population(t)

3. Repeat

(a) Select parents from population(t)

(b) Perform crossover on parents creating population(t+1)

(c) Perform mutation of population(t+1)

(d) Determine fitness of population(t+1)

4. Until best individual is good enough

4 Objetives
• Learn about Linux kernel scheduling and ways to optimize it for performance according to

changes performed in kernel values.

5 Justification
Out of the box, operating systems are optimized for the average consumer. Taking this into con-
sideration, we can say the the Linux kernel scheduler is optimized for best general performance.
Nevertheless, for some users there may be circumstances at which a better performance for an
specific task may be wanted at the price of reducing performance of not related tasks.

One way to optimize performance for an specific set of tasks, is changing the way the Linux kernel
scheduler works, to assure that the tasks we want to perform will be carried out in an optimal way.

We want to make an analysis of the changes in the Linux kernel scheduler that could be carried
out to optimize the pi calculation. Through this, we also expect to understand more the way
schedulers work and the impact of changing kernel values in performance.

4



6 Development
At first, we to run our tests we decided that the kernel values that we were going to change were
the ones related to latency, granularity, timeslice and memory swapping. After validating initial
values and the range of each value, we assigned a different set of values to each test.

To run different tests, we created a bash script that receives the kernel values as parameters,
changes the kernel values and runs the Sample Pi Program Benchmark on Phoronix. Everytime
we ran a test, the result Phoronix runs the sample pi program at least three times and it provides
us with the time in seconds that takes to perform the calculation. This test is ran at least three
times and the result it show us is the average value of those three tests, if the performance of the
tests has a standard deviation bigger than 5% it runs another tests until it gets a value more closer
to the one on the other tests.

After running an initial set of tests, we noticed that there was a change in performance between the
different tests, the difference between each of them was in the tenths of second. We think at first
that the improvement was insignificant but for servers or computers that are meant to perform a
lot of operations through days, this modifications could mean difference of hours of processing and
this difference of hours could have a big impact on cost for corporations.

6.1 Genetic Algorithm Implementation
To initialize the optimization of the problem through a genetic algorithm we start by creating a
population of size N, each with randomly generate phenotype. Since there is a range of values
appropriated for the kernel variables we were changing, in the code each variable is randomly ini-
tialized with a random integer generated between its respective accurate ranger.

Then for the selection operation, we need to evaluate the fitness of each element of the pop-
ulation. In this case, the fitness function will be the result of the benchmark obtained with the
Phoronix Test.

Follows the reproduction. Here we pick two parents with probability according to relative fitness
using a type of Monte Carlo method, the rejection sampling. Then we do a crossover, creating a
child by combining the genotype of these two parents and we add him to a new population that
will replace the old generation once is full.

This process is continuously repeated until the target result is reached. Also if we do not have an
specific target we could just specify a number or generation. According to what you need you may
change your stop criteria and the way is calculated.

Source code

1 import java.io.BufferedWriter;
2 import java.io.File;
3 import java.io.FileWriter;
4 import java.io.IOException;
5 import java.util.concurrent.ThreadLocalRandom;
6

7

8 public class Population {
9 private DNA population [];

10 private int generation;
11 private double target;
12 private DNA maxFitness;
13 private double defaultFitnessValue;
14

15 public Population(double target , double defaultFitnessValue , int size){
16 this.generation =1;
17 this.maxFitness=null;

5



18 this.target = target;
19 this.defaultFitnessValue=defaultFitnessValue;
20 this.population = new DNA[size];
21 for (int i = 0; i < size; i++) {
22 this.population[i] = new DNA((i+1)+(this.generation*size));
23 }
24 this.calculateFitness ();
25 }
26

27 public int getGeneration (){
28 return this.generation;
29 }
30

31 public DNA getMaxFitness (){
32 return this.maxFitness;
33 }
34

35 public void calculateFitness (){
36 BufferedWriter bw = null;
37 FileWriter fw = null;
38 try {
39 File file = new File("results.txt");
40 if (!file.exists ()) {
41 file.createNewFile ();
42 }
43 fw = new FileWriter(file.getAbsoluteFile (), true);
44 bw = new BufferedWriter(fw);
45 bw.write("Generation: "+this.generation);
46 bw.newLine ();
47 for (int i=0; i<this.population.length;i++){
48 System.out.println("Generation: "+this.generation+" DNA number: "+(i

+1));
49 this.population[i]. calculateFitness ();
50 bw.write(this.population[i]. toString ());
51 bw.newLine ();
52 if(this.maxFitness !=null){
53 if(this.population[i]. getFitness ()<this.maxFitness.getFitness ()){
54 this.maxFitness=this.population[i];
55 }
56 }
57 else{
58 this.maxFitness=this.population[i];
59 }
60 }
61 bw.write("At generation "+this.getGeneration ()+"the best is "+this.

getMaxFitness ()+"");
62 bw.newLine ();
63 System.out.println("\nAt generation "+this.getGeneration ()+"the best is

"+this.getMaxFitness ()+"\n");
64 } catch (IOException e) {
65 e.printStackTrace ();
66 } finally {
67 try {
68 if (bw != null)
69 bw.close ();
70 if (fw != null)
71 fw.close ();
72 } catch (IOException ex) {
73 ex.printStackTrace ();
74

75 }
76

77 }

6



78 }
79

80 public boolean finished (){
81 return this.maxFitness.getFitness () <=target;
82 }
83

84 public int randInt(int min , int max) {
85 int randomNum = ThreadLocalRandom.current ().nextInt(min , max + 1);
86 return randomNum;
87 }
88

89 public double relativeFitness(double fitness){
90 return ((this.defaultFitnessValue -fitness)/Math.abs(this.target -this.

defaultFitnessValue));
91 }
92

93 public DNA acceptReject (){
94 int randomIndex = this.randInt(0, this.population.length -1);
95 double dnaFitness = this.relativeFitness(this.population[randomIndex ].

getFitness ());
96 if(randInt(0, 10) < dnaFitness *10){
97 return this.population[randomIndex ];
98 }
99 else{

100 return this.acceptReject ();
101 }
102 }
103

104 public DNA getBestOfGeneration (){
105 return this.maxFitness;
106 }
107

108 public void newGeneration (){
109 DNA newPopulation [] = new DNA[this.population.length ];
110 this.generation ++;
111 for(int i=0; i<this.population.length; i++){
112 DNA parent1 = this.acceptReject ();
113 DNA parent2 = this.acceptReject ();
114 DNA child = parent1.crossover(parent2);
115 child.setTestName ((i+1)+(this.generation*this.population.length));
116 newPopulation[i]=child;
117 }
118 this.population = newPopulation;
119 this.calculateFitness ();
120 }
121 }
122

123 import java.io.BufferedReader;
124 import java.io.FileNotFoundException;
125 import java.io.FileReader;
126 import java.io.IOException;
127 import java.util.Random;
128

129 public class DNA {
130

131 private double fitness;
132 private int genes [];
133 private String testName;
134 // granularity , latency , swapiness and timeslice
135

136 public DNA(int number){
137 this.genes = new int [4];
138 this.genes [0] = this.randInt (200000 , 10000000);

7



139 this.genes [1] = this.randInt (100000 , this.genes [0]/2);
140 this.genes [2] = this.randInt(0, 100000);
141 this.genes [3] = this.randInt (10, 60);
142 this.fitness = 0;
143 this.testName = "pts"+number;
144 }
145

146 public DNA(int[] dna){
147 this.genes = dna;
148 }
149

150 public void setTestName(int number){
151 this.testName = "pts"+number;
152 }
153

154 public double getFitness (){
155 return this.fitness;
156 }
157

158 public void calculateFitness (){
159 double newFitness =0;
160 try {
161 this.executeScript ();
162 newFitness = Double.parseDouble(this.readFile("/home/conzmr/"+this.

testName+".csv"));
163 } catch (Exception e) {
164 System.out.println("Cannot run fitness function. ");
165 e.printStackTrace ();
166 }
167 this.fitness = newFitness;
168 System.out.println("Result yay"+ newFitness);
169 }
170

171 public int randInt(int min , int max) {
172 Random rand = new Random ();
173 int randomNum = rand.nextInt ((max - min) + 1) + min;
174 return randomNum;
175 }
176

177 public DNA crossover(DNA parent){
178 DNA child;
179 int midpoint = randInt(0, 3);
180 if(midpoint ==0){
181 child = this;
182 }
183 else if(midpoint == 3){
184 child = parent;
185 }
186 else{
187 int newGenes [] = new int [4];
188 for(int i=0; i<midpoint; i++){
189 newGenes[i]=this.genes[i];
190 }
191 for(int i=midpoint; i<newGenes.length; i++){
192 newGenes[i]= parent.genes[i];
193 }
194 child = new DNA(newGenes);
195 }
196 return child;
197 }
198

199 public String getGenesString (){
200 StringBuilder sb = new StringBuilder ();

8



201 for (int i=0; i<this.genes.length; i++){
202 sb.append(this.genes[i]+" ");
203 }
204 return sb.toString ();
205 }
206

207 public String [] getGenes (){
208 String [] genesArray = new String[this.genes.length ];
209 for (int i=0; i<this.genes.length; i++){
210 genesArray[i]= String.valueOf(this.genes[i]);
211 }
212 return genesArray;
213 }
214

215 public String toString (){
216 return "\nGenotype: "+this.getGenesString ()+ "\nPhenotype: "+this.

fitness;
217 }
218

219 public void executeScript () {
220 try {
221 ProcessBuilder pb = new ProcessBuilder("/home/conzmr/Documents /4th

Semester ISC/Operating Systems/KernelOptimization/src/
expect_script.sh",

222 this.testName , this.getGenes ().toString ());
223 pb.inheritIO ();
224 Process p = pb.start ();
225 int errCode = p.waitFor ();
226 System.out.println("Command executed with " + (errCode == 0 ? "no

errors." : "errors."));
227 System.out.println("Script executed successfully");
228 } catch (Exception e) {
229 e.printStackTrace ();
230 }
231 }
232

233 public String readFile(String fileRoute) {
234 String csvFile = fileRoute;
235 BufferedReader br = null;
236 String line = "";
237 try {
238

239 br = new BufferedReader(new FileReader(csvFile));
240 while ((line = br.readLine ()) != null) {
241 if (line.startsWith("\" Sample Pi Program - Phoronix Test

Suite v5.2.1")){
242 System.out.println(line);
243 return line.substring(line.length () -4);
244 }
245 }
246 } catch (FileNotFoundException e) {
247 e.printStackTrace ();
248 } catch (IOException e) {
249 e.printStackTrace ();
250 } finally {
251 if (br != null) {
252 try {
253 br.close ();
254 } catch (IOException e) {
255 e.printStackTrace ();
256 }
257 }
258 }

9



259 return "0.0";
260 }
261 }
262

263

264 import java.io.IOException;
265

266 public class MainClass {
267

268 public static void main(String [] args) throws InterruptedException ,
IOException {

269 Population population = new Population (4.5, 5, 10);
270 while(! population.finished ()){
271 population.newGeneration ();
272 }
273 }
274 }

Listing 1: Código fonte em Java

10



7 Results
In this section we show and discuss the results that we obtained during our set of tests. Here is a
table showing the values for the kernel parameters that we decided to modify and the results we
obtained from them. We ran eleven tests.

As we can observe the best results was obtained in test five with a result of 4.51 seconds spent
performing the calculations of the benchmark. Also, we can observe that the worst performance
was obtained with test six which has a result of 4.98 seconds. It is worth a mention that both test
five and six have the same values except for the timeslice value. Then we can conclude that in this
case a smaller value on the timeslice can have an impact on performance.

8 Conclusion
In cases like this, where we want to improve something that requires a wide range of tests is a
more efficient option to achieve a good result. This project allow us to explore how to optimize
the kernel for performance according to our needs and also to understand one of the applications
of a genetic algorithm.

At first, we did not have an initial idea of how much impact the changes on kernel values would
actually reflect on real time of execution. Our fluctuations are all around in decimals of a second
and it might seem like it does not have a big impact on performance but when we thought of big
calculations that should be running for days, we think that this modification take more sense, since

11



they would have an impact of hours.

It was really entertaining for us to do this project because we started optimization for H.264
encoding, then we changed it for measuring the performance of a videogame and then we applied
our previous learning to a calculation of pi. And also, during this way we were researching about
genetic algorithms looking for a way to improve our project.

Actually, we think that further development for this project would be applying the genetic al-
gorithm to create a software in which given a test it start running and tunning the kernel variables
for hours and at the end, it adjusts them in order to achieve the best performance.

When you are involved in a career that needs to analyze a lot of variables and how they affect
your system when they change, we think you develop a lot of abilities to analyze those results
and come up with better ideas every time to achieve what you want. At the start of this course,
when we used our computers we did not though about stuff like the kernel and the scheduler,
now we do and I think we are going to look forward to these kind of information and how to per-
form optimizations to achieve better results at whatever cool stuff we do in the following semesters.

9 References
Genetic Algorithm. (s.f.). Genetic Algorithms. Retrieved from:

https://www.doc.ic.ac.uk/ nd/surprise96/journal/vol1/hmw/article1.html

Kernel. (s.f.). Deadline Task Scheduling. Retrieved from:
https://www.kernel.org/doc/Documentation/scheduler/ sched-deadline.txt

Open Suse.(s.f.). Tuning the time scheduler. Retrieved from:
https://doc.opensuse.org/documentation/html/
openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html

Phoronix Test Suite. (2016). OpenBenchmarking.org. Retrieved from
AIO-Stress [pts/aio-stress] : https://openbenchmarking.org/test/pts/aio-stress

Red Hat. (s.f.). CPU Scheduling. Retrieved from:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/
html/Performance_Tuning_Guide/s-cpu-scheduler.html

Russel, S., Norving, P. (1994). Beyond Classical Research. In Artificial Intelligence:
A Modern Approach. Third Edition. Englewood Cliffs, NJ: Prentice Hall.

12


	Introduction
	Theoretical Framework
	Process Scheduler
	Basics concepts related to scheduling
	Scheduling Policies
	The sysctl Interface
	Calculating Pi Using the Leibniz Formula

	Genetic Algorithm
	Implementation Details
	Selection Operator
	Crossover Operator
	Mutation Operator
	Effects of Genetic Operators


	Objetives
	Justification
	Development
	Genetic Algorithm Implementation

	Results
	Conclusion
	References

