On Proving the Integral Definition of the Gamma Function for Non-Negative Real Numbers

Ivan V. Morozov

August 2019

One may be familiar with the fact that the gamma function of $s, \Gamma(s)$ for non-negative real numbers is defined by the integral:

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

or simply

$$
\Gamma(s)=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x
$$

But how can one prove this statement? There are quite a few ways to do so, but here is an example of one. One can try integrating by parts the integral before by setting $u=\frac{1}{e^{x}}$, and $d v=x^{s-1}$. From that one gets $d u=-\frac{1}{e^{x}}$ with logarithmic differentiation by

$$
\begin{aligned}
y & =e^{-x} \\
\ln y & =-x \ln e
\end{aligned}
$$

and since $\ln e=1$,

$$
\ln y=-x
$$

differentiate both sides,

$$
\begin{gathered}
\frac{d}{d x}(\ln y)=\frac{d}{d x}(-x) \\
\frac{1}{y} \frac{d y}{d x}=-1
\end{gathered}
$$

and multiply both sides by function y,

$$
\frac{d y}{d x}=-e^{-x}=-\frac{1}{e^{x}}=d u
$$

To integrate x^{s-1}, apply the power rule for integration

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}
$$

and substitute $s+1$ for n to get

$$
\int x^{s-1} d x=\frac{x^{s}}{s}=v
$$

In result,

$$
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x=\left[\frac{x^{s}}{e^{x} s}\right]_{x=0}^{\infty}-\int_{0}^{\infty}-\frac{x^{s}}{e^{x} s} d x
$$

or simply

$$
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x=\left[\frac{x^{s}}{e^{x} s}\right]_{x=0}^{\infty}+\int_{0}^{\infty} \frac{x^{s}}{e^{x} s} d x
$$

The factor of $\frac{1}{s}$ can be pulled out from the integral to get

$$
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x=\left[\frac{x^{s}}{e^{x} s}\right]_{x=0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} \frac{x^{s}}{e^{x}} d x
$$

One can integrate by parts once more, by setting $u=\frac{1}{e^{x}}$, and $d v=x^{s}$. It has been proven earlier that $\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=-\frac{1}{e^{x}}=d u$ To integrate x^{s}, apply the same power rule for integration

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}
$$

and substitute s for n,

$$
\int x^{s} d x=\frac{x^{s+1}}{s+1}=v
$$

When substituted into the equation before, one has

$$
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x=\left[\frac{x^{s}}{e^{x} s}+\frac{x^{s+1}}{e^{x} s(s+1)}\right]_{x=0}^{\infty}-\int_{0}^{\infty}-\frac{x^{s+1}}{e^{x} s(s+1)} d x
$$

or when simplified,

$$
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x=\left[\frac{x^{s}}{e^{x} s}+\frac{x^{s+1}}{e^{x} s(s+1)}\right]_{x=0}^{\infty}+\frac{1}{s(s+1)} \int_{0}^{\infty} \frac{x^{s+1}}{e^{x}} d x
$$

There seems to be a pattern, resembling a sum, but before making final conclusions it is better to integrate by parts one more time by setting $u=\frac{1}{e^{x}}$, and $d v=x^{s}$. Again, it has been proven earlier that $\frac{d}{d x}\left(\frac{1}{e^{x}}\right)=-\frac{1}{e^{x}}=d u$ To integrate x^{s+1}, apply the power rule for integration

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}
$$

and substitute $s+1$ for n,

$$
\int x^{s+1} d x=\frac{x^{s+2}}{s+2}=v
$$

Substituting into the previous equation and simplifying further, one gets

$$
\begin{aligned}
\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}} d x= & {\left[\frac{x^{s}}{e^{x} s}+\frac{x^{s+1}}{e^{x} s(s+1)}+\frac{x^{s+2}}{e^{x} s(s+1)(s+2)}\right]_{x=0}^{\infty} } \\
& +\frac{1}{s(s+1)(s+2)} \int_{0}^{\infty} \frac{x^{s+2}}{e^{x}} d x
\end{aligned}
$$

There are a couple details to be noted here, for instance the increasing integer value that is added to exponent s of x that correlates with the $n^{\text {th }}$ term in the sum minus one. In the denominator, e^{x} is a common factor, but the rest can be expressed as a partial product that depends on the index quantity of the infinite sum. Putting everything together, one can express the gamma function $\Gamma(s)$ as

$$
\Gamma(s)=\left[\sum_{n=0}^{\infty} \frac{x^{s+n}}{e^{x} \prod_{m=0}^{n}(s+m)}\right]_{x=0}^{\infty}
$$

Since the infinite sum has external factors x^{s} and e^{x}, they can be pulled out of the sum, such that our equation looks like this:

$$
\Gamma(s)=\left[\frac{x^{s}}{e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{\prod_{m=0}^{n}(s+m)}\right]_{x=0}^{\infty}
$$

The partial product in the denominator of the sum

$$
\prod_{m=0}^{n}(s+m)
$$

can be rewritten as

$$
s \prod_{m=1}^{n}(s+m)
$$

The Pochhamer rising factorial function $x^{(n)}$ can be defined as

$$
x^{(n)}=\prod_{m=1}^{n}(x+m-1)
$$

If x is substituted by $s+1$, one gets

$$
(s+1)^{(n)}=\prod_{m=1}^{n}(s+m)
$$

and so from there it can be derived that the term

$$
s \prod_{m=1}^{n}(s+m)
$$

can be written as

$$
s(s+1)^{(n)}
$$

Substituting into the original sum, $\Gamma(s)$ is expressed as

$$
\Gamma(s)=\left[\frac{x^{s}}{e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{s(s+1)^{(n)}}\right]_{x=0}^{\infty}
$$

and when $\frac{1}{s}$ is factored out of the sum, it becomes

$$
\Gamma(s)=\left[\frac{x^{s}}{s e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{(s+1)^{(n)}}\right]_{x=0}^{\infty}
$$

The Pocchamer factorial has a property that defines it as

$$
x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}
$$

and if x is substituted by $s+1$, one gets

$$
(s+1)^{(n)}=\frac{\Gamma(s+n+1)}{\Gamma(s+1)}
$$

Plugging that in to our equation for $\Gamma(s)$, it becomes

$$
\Gamma(s)=\left[\frac{x^{s}}{s e^{x}} \sum_{n=0}^{\infty} \frac{x^{n} \Gamma(s+1)}{\Gamma(s+n+1)}\right]_{x=0}^{\infty}
$$

and again the external factor of $\Gamma(s+1)$ can be pulled out of the infinite sum to get

$$
\Gamma(s)=\left[\frac{x^{s} \Gamma(s+1)}{s e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(s+n+1)}\right]_{x=0}^{\infty}
$$

The function $\Gamma(s+1)$ is equal to $s \Gamma(s)$. This can be plugged in to our previous equation to have

$$
\Gamma(s)=\left[\frac{x^{s} \Gamma(s)}{e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(s+n+1)}\right]_{x=0}^{\infty}
$$

The expression

$$
\frac{x^{s} \Gamma(s)}{e^{x}} \sum_{n=0}^{\infty} \frac{x^{n}}{\Gamma(s+n+1)}
$$

is the power series expansion for the lower incomplete gamma function $\gamma(s, x)$. And therefore the gamma function can be written as

$$
\Gamma(s)=[\gamma(s, x)]_{x=0}^{\infty}
$$

or

$$
\Gamma(s)=\gamma(s, \infty)-\gamma(s, 0)
$$

$\gamma(s, \infty)$ becomes the complete gamma function $\Gamma(s)$, while $\gamma(s, 0)$ breaks down to 0 , and the equation becomes

$$
\Gamma(s)=\Gamma(s)-0
$$

and finally

$$
\Gamma(s)=\Gamma(s)
$$

From this it can be said that the equation

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

is true.

