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1 Introduction

The Laplace Transform L{f(t)} is an integral transform that is very useful
for solving differential equations, but for many students (me included), it often
feels mysterious and confusing. It’s one thing to learn how to use it, but another
to understand why it works the way it does. In this short article, I want to share
the way I like to think about it by starting from what makes it so useful and
working backwards from there to derive the Laplace Transform. We’ll cover

1. What the Laplace Transform (and transforms in general) is,

2. What property the Laplace Transform has that makes it so useful for
solving differential equations, and

3. How you could start from that property and re-“discover” the Laplace
Transform for yourself, seeing why it works and how you could have in-
vented it yourself like Laplace (or at least, this is how I like to imagine he
found it).

2 Integral Transforms, and why the
Laplace Transform is special

In general, an integral transform T takes a function f(t) and converts it into an-
other function F (s) in a new parameter s. For this discussion, we are specifically
interested in integral transforms that integrate over the interval [0,∞):

T{f(t)} = F (s) =

∫ ∞
0

K(s, t)f(t)dt (1)

The function K(s, t) shown above is called the kernel. The Laplace Trans-
form is one such integral transform defined with the kernel K(s, t) = e−st:
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L{f(t)} =

∫ ∞
0

e−stf(t)dt

It can be shown through integration by parts that the Laplace Transform
has the following property when integrating the derivative of a function f(t):

L{f ′(t)} = sL{f(t)} − f(0) (2)

Or more generally,

L{f (n)(t)} = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0) (3)

This property means that when we apply the Laplace transform to certain
types of differential equations, it effectively converts them to algebraic ones
that are much often easier to solve!

Example 2.1. Suppose we wish to solve the differential equation f ′′(t)+3f ′(t)+
5f = 6 with initial conditions f(0) = 0 and f ′(0) = 0. Taking the Laplace
transform using equation (3), we get:

(s2F (s)− sf(0)− f ′(0))︸ ︷︷ ︸
L{f ′′(t)}

+ 3(sF (s)− f(0))︸ ︷︷ ︸
L{3f ′(t)}

+ 5(F (s))︸ ︷︷ ︸
L{5f(t)}

=
6

s︸︷︷︸
L{6}

F (s)(s2 + 3s + 5) + f(0)(−s− 3)− f ′(0) =
6

s

This is now an algebraic equation that can be solved for F (s), and then
for f(s) via the inverse Laplace transform (L−1). A similar strategy works for
solving other differential equations as well.

3 But...How would you ever figure that out?
Derivation of the Laplace Transform

While many texts just introduce the Laplace transform and prove that it has the
useful properties of converting differential equations into algebraic equations, I
personally find it much more satisfying to explore how we can start from this
goal of finding a transform that converts differential equations into algebraic
ones and derive the Laplace transform from there.

Goal First, we state our goal. We seek to find some integral transform T
that, when applied to the derivative of a function (f ′(t)), returns an algebraic
expression in terms of that function (f(t)) and a variable s. In notation, this
can be represented as

T{f ′(t)} = p(s, f)T{f(t)}+ q(s, f) (4)
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where p(s, f) and q(s, f) each represent some function of our new variable
s and the original function f (we include both s and f as parameters to these
functions because we don’t know yet what they will look like - except that they
won’t contain a derivative of f(t), since our entire goal here is to get rid of
derivatives). p(s, f) or q(s, f) might look like s2f(0), or it might look like some-
thing else. At this point, it doesn’t really matter - we just need some function
that this works for, since all we care about is getting this algebraic equation
that we know how to solve.

Note that we don’t provide t as a parameter to these functions - so p(s, f)
and q(s, f) would only be able to contain constant values of f like f(0) or f(3),
not f(t).

If we find an integral transform that satisfies this property, then we will be
able to convert differential equations into algebraic ones just as we did with
the Laplace transform. Note (4)’s similarity to (2) - in (2), p(s, f) = s and
q(s, f) = f(0). We will soon see this is what we get here later on.

If at any point you feel lost in the derivation that follows or forget what
we’re working towards, come back here and remind yourself what we’re trying
to achieve. We want a transform T that acts according to (4) so that we can
convert differential equations to algebraic ones. That’s all that matters.

Derivation Remember what our integral transform T looks like from equation
(1), repeated here:

T{f(t)} = F (s) =

∫ ∞
0

K(s, t)f(t)dt

When we say we want to find an integral transform T , we really mean that
we wish to determine the kernel K that will give T the properties we want.

So what is K? Well, let’s start with (4) and mess with the left hand side
(LHS) until we can get it to equal the right hand side (RHS). First, we’ll expand
out the T s into their full forms.∫ ∞

0

K(s, t)f ′(t)dt︸ ︷︷ ︸
T{f ′(t)}

= p(s, f)

∫ ∞
0

K(s, t)f(t)dt︸ ︷︷ ︸
T{f(t)}

+q(s, f)

We know we want the integral on the LHS to look like the one on the RHS,
so let’s integrate the LHS by parts (u = K(s, t), du = K ′(s, t)dt; dv = f ′(t)dt,
v = f(t)).

K(s, t)f(t)

∣∣∣∣∞
0︸ ︷︷ ︸

uv

−
∫ ∞
0

K ′(s, t)f(t)dt︸ ︷︷ ︸
−

∫
vdu

= p(s, f)

∫ ∞
0

K(s, t)f(t)dt + q(s, f) (5)
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First, we’ll focus on the first term on the LHS. This notation is a little sloppy,
since we can’t really evaluate that expression at∞, but it’s okay if we take that

notation to actually mean limb→∞K(s, t)f(t)

∣∣∣∣b
0

.

If we assume K(s, t)f(t) converges to 0 when t → ∞ (something we will
make sure of later), then we get

K(s, t)f(t)

∣∣∣∣∞
0

= (0−K(s, 0)f(0)) = −K(s, 0)f(0).

Because this term makes no reference to the variable t, we can call the entire
thing q(s, f)... and great! Now that part, after re-arranging, matches the RHS
of our main equation.

−
∫ ∞
0

K ′(s, t)f(t)dt + q(s, f) = p(s, f)

∫ ∞
0

K(s, t)f(t)dt + q(s, f)

Now let’s focus on the integral term in the LHS. We can see from inspection
that it must equal the first term on the RHS, i.e.

−
∫ ∞
0

K ′(s, t)f(t)dt︸ ︷︷ ︸
from the LHS

= p(s, f)

∫ ∞
0

K(s, t)f(t)dt︸ ︷︷ ︸
from the RHS

(6)

How can we choose a kernel K to make this work? Well, we just need to
find a kernel such that

K ′(s, t) = −p(s, f)K(s, t), (7)

where p is represents some function of s and f (just like on the RHS). This
assumption is extremely important, and will ultimately allow us to find K later.
If the assumption seems a little arbitrary or confusing, just imagine substituting
it back into the LHS of (7). When we do that, we would be able to extract the
−p(s, f) term from the integral (since it doesn’t rely on t and is thus a ”constant”
during integration), giving us what we have on the RHS.

With this assumption in mind, substituting everything we’ve done back into
the LHS, we get

p(s, f)

∫ ∞
0

K(s, t)f(t)dt + q(s, f) = p(s, f)

∫ ∞
0

K(s, t)f(t)dt + q(s, f)︸ ︷︷ ︸
The LHS and RHS are identical now!

Awesome! Let’s go over what just happened here. We started with equation
(4), which specified that our transform must convert derivatives of a function
into an algebraic expression involving a variable s and the original function
f(t). Then, we expanded the transforms out and made two key assumptions
that allowed us to show each side to be equal:
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1. K ′(s, t) = −p(s, f)K(s, t)

2. limb→∞K(s, t)f(t) = 0

Our kernel K must satisfy these assumptions for our transform to achieve
our goal, so we can use them to figure out what K must be. Let’s start with
assumption 1, which is a differential equation itself. Fortunately, we can solve it
easily! (Note: I’m changing to Leibniz briefly to make the following steps more
clear):

dK

dt
= −p(s, f)K∫

dK

K
=

∫
−p(s, f)dt

ln |K| = −p(s, f)t

K = Ce−p(s,f)t

Here we have a general form for our kernel K! To clean it up a bit, we can
recall that our function p(s, f) could be anything involving s and f - it could
be s2, s + f(34), or something else; any of these should work. However, for
the sake of simplicity (because remember, we want to use this kernel to help us
convert differential equations to algebraic ones, which was the entire reason we
went through all this trouble in the first place), we’ll choose p(s, f) = s. C can
also be any constant, so let’s choose 1 to make it nice.

With that we have our final kernel equation,

K = e−st (8)

So substituting back into our original definition for an integral transform (1),
we get that our magical transform which will let us solve differential equations
with ease is:

T{f(t)} =

∫ ∞
0

e−stf(t)dt = L{f(t)} (9)

Which is, as it turns out, the Laplace Transform!

Tying up loose ends With our kernel in mind, we can ensure that assump-
tion 2 is satisfied by mandating that all of our functions be of ”exponential
order”, which just means that they don’t grow faster than e−st; i.e., there exist
constants M , c, and T such that

|f(t)| ≤Mect (10)

for all values of t ≥ T .
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