Laboratory 4

Jorge Adrian Padilla Velasco

Abstract— The objective of this laboratory is to understand
the power of the LEX language. To do so, we compared two
files (lex.c and compiler.l) that do a lexical analysis of a third
file (random_code.ac).

I. INTRODUCTION

LEX is a program designed to generate scanners, also
known as tokenizers, which recognize lexical patterns in
text. Lex is an acronym that stands for “lexical analyzer
generator.” It is intended primarily for Unix-based systems.
The code for Lex was originally developed by Eric Schmidt
and Mike Lesk.

Lex can perform simple transformations by itself but its
main purpose is to facilitate lexical analysis, the processing
of character sequences such as source code to produce
symbol sequences called tokens for use as input to other
programs such as parsers. Lex can be used with a parser
generator to perform lexical analysis. It is easy, for example,
to interface Lex and Yacc, an open source program that
generates code for the parser in the C programming language.

Lex is proprietary but versions based on the original code
are available as open source. These include a streamlined
version called Flex, an acronym for “fast lexical analyzer
generator,” as well as components of OpenSolaris and Plan
9.

II. PROBLEM DESCRIPTION

We have to generate a LEX code (compiler.l) to parse
an ac file (example.ac). For example, the ac file could be
something like:

//basic code
//float b
f b

// integer a
ia

//print 8.5
p b

And the output should be something like:

COMMENT
COMMENT

floatdcl id

COMMENT

intdcl id

COMMENT

id assign inum

COMMENT

id assign id plus fnum
COMMENT

print id

The LEX code should compile with a Makefile as follows:

make
lex compiler.l
gcc lex.yy.c -o compiler -11

In order to generate the ac file, we have to add —stress as
a parameter when executing the python script that was given
to us so it generates stress examples for us to try:

python3 code_generator.py —--stress

This will generate a huge ac random code (ran-
dom _code.ac). Now we have to run our solution (compiler.l)
and check how much time it takes to do the LEX part of the
compiler.

Once we have done that, now we have to compare that
time with the time it takes for the code we generated (lex.c)
for the previous laboratory (lab 3) to run, using the same
random_code.ac file.

ITII. SOLUTION

First, we try our LEX file with the huge random ac code
generated by running:

make

time ./compiler random_code.ac

The code can be checked out on: GitHub.

Now, we do the same thing with our C code (lex.c) we
created for laboratory 3:

make

time ./lex random_code.ac

The code can be checked out on: \GitHub.
IV. RESULTS

After executing our LEX code (compiler.l), we get the
following output regarding the execution time taken:

Om3.218s
Om0.382s

real
user


https://github.com/yorchpave/Compilers/tree/master/04
https://github.com/yorchpave/Compilers/tree/master/03

Sys

After executing our C code (lex.c), we get the following

Om0.838s

output regarding the execution time taken:

real Om2.753s
user Om0.232s
Sys Om0.716s

To visualize better these outputs, we compared them using
a graph:

CVSLEX
4
—&— lex_compiler
c_compiler

3 -
@
=
=
S
o
& 27
@
£
[=

14

D
0 -
T T T
Real User Sys
Statistics

Fig. 1. C vs LEX execution time.

V. CONCLUSIONS

The token descriptions that LEX uses are known as regular
expressions, extended versions of the familiar patterns used
by the grep and egrep commands. LEX turns these regular
expressions into a form that the lexer can use to scan the
input text extremely fast, independent of the number of
expressions that it is trying to match. A LEX lexer is almost
always faster than a lexer that we might write in C. An
example where this is not the case, is the one presented on
this paper. As we can see in Fig. 1, on the RESULTS section,
the C compiler written for laboratory 3 was a tiny bit faster
than the LEX compiler written for laboratory 4.

As the input is divided into tokens, a program often needs
to establish the relationship among the tokens. A C com-
piler needs to find the expressions, statements, declarations,
blocks, and procedures in the program. This task is known as
parsing and the list of rules that define the relationships that
the program understands is a grammar. Yacc takes a concise
description of a grammar and produces a C routine that can
parse that grammar, a parser. The yacc parser automatically
detects whenever a sequence of input tokens matches one

of the rules in the grammar and also detects a syntax error
whenever its input does not match any of the rules. A yacc
parser is generally not as fast as a parser you could write
by hand, but the ease in writing and modifying the parser
is invariably worth any speed loss. The amount of time a
program spends in a parser is rarely enough to be an issue
anyway.

REFERENCES

[1] T. Mason, D. Brown, J. Levine, Lex & Yacc, 2nd edition.
[2] M. Rose, Lex (lexical analyzer generator). Recovered from:
https://whatis.techtarget.com/definition/Lex-lexical-analyzer-generator


https://whatis.techtarget.com/definition/Lex-lexical-analyzer-generator

	INTRODUCTION
	PROBLEM DESCRIPTION
	SOLUTION
	RESULTS
	CONCLUSIONS
	References

