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Abstract: This article proposes to obtain a statistical model of the daily peak electricity
load of a household located in Austin-TX,USA. The Box-Jenkins methodology was followed
to obtain the best fit for the time-series. Four models provided a good fit: ARIMA(0,1,2),
ARIMA(1,1,2), SARIMA(0,1,2)(0,1,1) and SARIMA(1,1,2)(0,1,1). The model with the highest
Akaike Information Criteria was the ARIMA(1,2,2). However, the model with the highest
forecast accuracy was the SARIMA(1,1,2)(0,1,1), which obtained an RMSE of 0.296 and a
MAPE Of 15.00.
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1. INTRODUCTION

This article proposes to obtain a statistical model of
the daily peak electricity load of a household located in
Austin-TX,USA. The data was gathered from the Pecan
Street Project Database of the University of Texas at
Austin. They account for minute-to-minute electricity use
during the year of 2015 of the house (a total of 525600
observations) The programming language Python was
used to create an algorithm to find the maximum minute-
load of a day, for all the 365 days of the year. This data
then served as input for for the statistical modeling, which
was performed in the programming language R. The data
was separated between training data (first 10 months and
test data (last two months). The training data was used
to identify the model and the test data for the accuracy of
the forecast. The next section will explain the methodology
and then apply it to the case study.

2. THE BOX-JENKINS METHODOLOGY

The Box-Jenkins Methodology is a three stage method for
selecting an appropriate model for the purpose of estimat-
ing and forecasting a univariate time series. The model
forecasts future values based on a combination of past
observations (AR) and past shocks (MA). A generalization
of this type of model is called SARIMA, which stands for
Seasonal Autoregressive Integrated Moving Average.

A time series {Xt|t = 1, 2, ..., N} is generated by a
SARIMA(p, d, q)(P,D,Q) process if:

ϕ(B)Φ(BS)(1−B)d(1−BS)DXt = Θ(B)ϑ(BS)εt

where N is the number of observations, p, d, q, P, D and Q
are integers; B is the lag operator; s is the seasonal period
length.

ϕ(B) = 1 − ϕ1B − ϕ2B
2 − ... − ϕpB

p is the regular
autoregressive operator (AR) of order p,

Φ(BS) = 1 − Φ1B − Φ2B
2S − ... − ΦPB

P is the sea
autoregressive operator (AR) of order P,

Θ(B) = 1−Θ1B−Θ2B
2− ...−ΘqB

q is the regular moving
average operator (MA) of order q,

ϑ(BS) = 1 − ϑ1BS − ϑ2B2S − ... − ϑQBQ is the seasonal
moving average operator (MA) of order Q,

d is the number of regular differences; D is the number of
seasonal differences; εt is the residual at time t, identically
and independently distributed with mean equal to zero
and constant variance.

The stages in the Box-Jenkins Methodology are the fol-
lowing:

(1) Identification: verify the stationarity of the series
and select the most relevant combination of auto-
regression and moving-average. Several plausible mod-
els may appear;

(2) Estimation: the parameters of each of the models are
estimated;

(3) Diagnostic checking: ensure that the residuals of the
estimated model are white noise.

The methodology only applies to time series that are
stationary. Stationary series are series that have constant
mean, constant variance, and an auto-correlation that only
depends on the lag of two periods. Therefore, the first step
is to test if the series is stationary.

2.1 Identification

Stationary series are series that have constant mean, con-
stant variance, and an auto-correlation that only depends
on the lag between two periods. To check if the series is sta-
tionary we can make a visual inspection by looking at its
plot, analyzing the ACF (Auto-correlation Function) plot,
and performing unit root tests (such as the Augmented
Dickey-Fuller (ADF) and the Phillips-Peron).



The ACF plot of the series (Figure 1) shows auto-
correlations persisting over time, a signature of non-
stationary series. Moreover, the series appears to have an
upward trend up to the month of August and a downward
one from September on. This is the result of the annual
seasonality which is not captured by this series. The con-
sequence is that the mean has different values across time
(i.e. it is not constant). What does appear in the series is
its weekly seasonality, typical of electricity use series. The
series can usually be detrended by applying its first differ-
ence. We will then be looking at changes in peak electricity
consumption per day. As for the weekly seasonality, this
could be captured by the first order difference If its not,
then a seasonal difference may have to be applied.

Fig. 1. Plot and ACF of the raw data

Unit root test Even though the plot and the ACF
appoint to a non-stationary series, we will check if it
contains a unit root by performing the Augmented Dickey
Fuller Test (ADF) and Phillips-Perron test.

The ADF test (Said and Dickey, 1984) evolved from the
Dickey Fuller Test (DF), in which the null-hypothesis is
that α < 1 for the model xt = αxt−1 + ut in which ut is
white noise. The ADF allows the differenced series ut to
be any stationary process rather than only white noise. If
α > 1 the series explodes and does not return to the mean
(i.e. non-stationary). The test resulted in a Dickey-Fuller
value of -1.446 with a p-value equal to 0.8098. The p-value
is not statistically significant, therefore the null-hypothesis
cannot be rejected. 39.906

The Phillips-Perron test is different than the the ADF be-
cause it estimates the auto-correlations directly instead of
approximating it with an auto-regressive model. The result
of the test is a Dickey-Fuller Z(alpha) equal to -39.906
with a p-value less than 0.01. The ADF and Phillips-
Perron appoint different results for the stationarity of the
series. Since at least one of them (ADF) indicates non-
stationarity, the null-hypothesis cannot be rejected and
the series is assumed to be non-stationary.

First order difference The first order difference (1−B)
of the series (Figure 2) is taken to try to eliminate non-
stationarity. Moreover, from now on we will be working
with the log of the series to account for the change in
variance across time. After the first order difference is
taken, the series appears to have constant mean. To verify
this hypothesis the ADF and the Phillips-Perron tests are
performed: (Dickey−Fuller = −10.901; p−value = 0.01),
(Dickey − FullerZ(alpha) = 276.18; p − value = 0.01).
Both test indicate that the first order difference of the
series is stationary at 1% significance level.

Fig. 2. Plot and ACF of the series first order difference

Adding a seasonal difference Even though the first order
difference of the series is stationary, it might not be
capturing the weekly seasonality of the data. Therefore,
a seasonal difference (1−B7) with a period equal to seven
is applied in addition to the first order difference. This
way it will have a first difference and a seasonal difference.
What we are looking at now is the variation of the change
in electricity consumption per week. The ADF and the
Phillips-Perron tests for the seasonally differenced series
also appoints to a stationarity at 1% significance level
(Dickey−Fuller = −13.035, p−value = 0.01), (Dickey−
FullerZ(alpha) = −291.47, p− value = 0.01)

Identification of the terms that fit the series Now that we
have the series stationary, it is possible to identify the the
order of the terms (AR(p),MA(q),SAR(P) and SMA(Q))
that best describe the behavior of the series. To accomplish
this, let’s start by looking at the auto-correlations of the
series with only the first order difference (Figure 2)

The ACF shows significant auto-correlations at lags 1 and
2. The fact that they are negative and that they cutoff after
lag 2 is an indication that is the series is overly-differenced
(i.e., a pattern of changes of sign from one observation
to the next) and is suited for an MA model. Adding MA
terms can partially cancel an order of difference in the
series, correcting for over-differentiation. Moreover, this
kind of model has short term memory. Specifically, in an



MA-2 process the forecast in of a given period is only
dependent on the last two forecast errors (shocks). The
last forecast is adjusted in the direction of the error it
made. If the error was positive, i.e. if the previous forecast
was too low, then the next forecast is adjusted upward
by a fraction of that error. Therefore a potential model
for the series is an ARIMA(0, 1, 2). This kind of model is
equivalent to a Simple Exponential Smoothing.

Let’s now look at the series with the additional seasonal
difference to see what type of information can be extracted.
The plot of the seasonally differenced series (Figure 3)
resembles a moving average process due to a rapid mean
reverting behavior of the series. The ACF plot confirms
this. The negative auto-correlations at lags 1 and 2 and
significant partial auto-correlation at lag 3 are signature
of an MA(2) process. Moreover, the presence of a signifi-
cant negative auto-correlation and negative partial auto-
correlation at multiples of the seasonal period are signa-
ture of and SMA(1). Therefore, a good fit for the series
could also be a SARIMA(0, 1, 2)(0, 1, 1)7.

Fig. 3. Plot and ACF of the seasonal and first difference

2.2 Estimation

In this stage of the methodology, the parameters ϕ, φ, ϑ,Θ
for each model are estimated by maximizing the likely-
hood function (the probability of obtaining the data given
the model). The fit of the models can be compared on
the basis of the Akaike Information Criteria (AIC) that
penalizes models with too many parameters:

AIC = 2k − 2 ln(L)

In which k equals the log-likelihood and L the number of
parameters. The lower the value of AIC the better the fit
of the model to the series.

The estimation of the parameters for the chosen models
are the following:

ARIMA(0,1,2):

(1−B)Xt = (1 + 0.39B + 0.34B2)εt;

AIC = −63.03; BIC = −51.89; σ2 = 0.047

ARIMA(1,1,2):

(1− 0.37B)(1−B)Xt = (1 + 0.72B + 0.13B2)εt;

AIC = −67.78; BIC = −52.92; σ2 = 0.04

SARIMA(0,1,2)(0,1,1)[7]:

(1−B)Xt = (1 + 0.39B + 0.33B2)(1−B7)εt;

AIC = −53.44 BIC = −38.6; σ2 = 0.48

SARIMA(1,1,2)(0,1,1)[7]:

(1−0.36B)(1−B)Xt = (1+0.71B+0.14B2)(1−0.99B7)εt;

AIC = −31.64; BIC = −13.19; σ2 = 0.047

The most parsimonious is ARIMA(1,1,2) and the least,SARIMA(1,1,2)(0,1,1)[7].

2.3 Validation

This stage of the methodology is about diagnostic checking
the residuals of the fitted models. The closer they resemble
a white noise process, the better they are at capturing the
the signal from the original series and hence forecasting.
We are looking to find a model fit with the following
characteristics:

(1) An ACF of the residuals that has virtually no signif-
icant values;

(2) Normality of the residuals; and
(3) Non-significant values of the Llung-Box Statistic

ARIMA(0,1,2) The ACF (Figure 4) shows only two
significant auto-correlations, They could be duo to chance
since at least one in 20 of the auto-correlations are ex-
pected to be significant out of randomness. We could say
the residuals are white noise, but the p-values for the Lung-
Box Statistic tell a different story. The null-hypothesis that
the combined auto-correlation up to lag 12 is zero cannot
be rejected. This indicates that there is still information
to extract from the series. The series seems to have a
persistent memory up to lag 12 that the MA terms cannot
capture. This could be taken into account by adding an
AR term. Also, the Q-Q plot indicates that the residuals
follow a normal distribution expect for extreme values.

ARIMA(1,1,2) Adding an AR term to the previous
model compensates for a possible under-differentiation.
It will make the forecast of a period t dependent on
a fraction of t−1 (including the error term). While an
MA(1) will be only of the forecast error (the shock). In
essence and AR model, a shock will have permanent effects
on the series, while in an MA(k) model only for the k
periods. When we add AR terms we are adding memory
to the series. Adding an AR term lowered the standard
error of the residuals and the AIC of the model. The
residuals have only 1 significant auto-correlation (Figure
5), which is expected to happened by chance in a 25 period
ACF. The residuals follow a normal distribution expect on
extreme values (outliers). The significant difference with
the ARIMA(0,1,2) is in the Lung-Box Statistic, which now
shows no significant auto-correlation up to any lag. This
means that by adding an AR(1) we were able to capture



Fig. 4. Residual analysis of ARIMA(0,1,2)

more signal from the series and leave only the noise. In
other words, the ARIMA(0,1,2) was trying to model a
rapid mean reverting behavior, while the original series
has a slower one.

Fig. 5. Residual analysis of ARIMA(1,1,2)

SARIMA(0,1,2)(0,1,1) The AIC value is larger than for
the model with only a first difference. Lets take a look at
the residuals. The ACF shows (Figure 6)two significant
spikes, they could be due to chance as they are small
in value (less than 0.2). The problem lies in Ljung-Box
statistic, telling us that the null hypothesis that all the
auto-correlation up to lag 15 are zero cannot be rejected.
This implies that there is some pattern that the model is

not recognizing. It is possible that by including an AR term
in the non-seasonal part this signal could be captured.

Fig. 6. Residual analysis of SARIMA(0,1,2)(0,1,1)[7]

SARIMA(1,1,2)(0,1,1) This model has only one signif-
icant value of auto-correlation, which is to be expected
in 20 lags. The residuals resemble a normal distribution,
again except outliers. The significant difference that the
addition of an ordinary AR(1) term brought is the values
for the Llung-Box statistic. The values are all bellow the
significance level and thus the residuals of this model fit
are purely white noise. This makes it a good candidate for
forecasting.

Fig. 7. Residual analysis of SARIMA(1,1,2)(0,1,1)[7]



2.4 Forecasting

With the fitted models validated, the next step in the
methodology is to use them for forecasting and measure
their accuracy. The forecasts are dynamic,in the sense
that out-of-sample values are updated. The forecast plots
(shown only the out-of-sample values) are in Figure 8. The
gray line represents the observed data and the black, the
forecast.

Two forecast measures are used, Root Mean Square Er-
ror(RMSE) and Mean Absolute Percentage Error(MAPE).
Their values for each model is are in Table 1.

Table 1. Forecast accuracy

Model RMSE MAPE

ARIMA(0,1,2) 0.327 17.25
ARIMA(1,1,2) 0.321 16.789

SARIMA(0,1,2)(0,1,1)[7] 0.304 15.63
SARIMA(1,1,2)(0,1,1)[7] 0.296 15.00

The model with the lowest RMSE and MAPE is the
SARIMA(1,1,2)(0,1,1)[7].
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Fig. 8. Forecast of the models


