Homework 3

Flynn Gilmore MATH 108 - Introduction to Formal Mathematics

September 25, 2015

Proposition 1. If A is even and B is odd, then 3A+2B is even.

Proof. There exists a K and J that are integers such that A = 2K and B = 2J + 1. Now, by plugging in our new A and B, we have 3A + 2B = 3(2K) + 2(2J + 1). When multiplied out, we have 3A + 2B = 6K + 4J + 2 = 2(3K + 2J + 1). If we let $3K + 2J + 1 = K_1$ where K_1 is an integer, $3A + 2B = 2(K_1)$. So by definition, $2K_1$ is even, so 3A + 2B is even. \Box

Proposition 2. If $6 \mid A$, then $36 \mid A^2$.

Proof. Suppose $6 \mid A$, so there exists an integer K such that 6K = A. By squaring both sides, $A^2 = (6K)^2 = 36K^2$. Because K^2 is an integer, by definition $36 \mid A^2$.