Homework 3

Flynn Gilmore
MATH 108 - Introduction to Formal Mathematics

September 25, 2015

Proposition 1. If A is even and B is odd, then $3 A+2 B$ is even.
Proof. There exists a K and J that are integers such that $A=2 K$ and $B=2 J+1$. Now, by plugging in our new A and B, we have $3 A+2 B=3(2 K)+2(2 J+1)$. When multiplied out, we have $3 A+2 B=6 K+4 J+2=2(3 K+2 J+1)$. If we let $3 K+2 J+1=K_{1}$ where K_{1} is an integer, $3 A+2 B=2\left(K_{1}\right)$. So by definition, $2 K_{1}$ is even, so $3 A+2 B$ is even.

Proposition 2. If $6 \mid A$, then $36 \mid A^{2}$.
Proof. Suppose $6 \mid A$, so there exists an integer K such that $6 K=A$. By squaring both sides, $A^{2}=(6 K)^{2}=36 K^{2}$. Because K^{2} is an integer, by definition $36 \mid A^{2}$.

