First Principle of Finite Induction

Ernest Michael Nelson

July 25, 2015

1 Introduction

In this paper, we will be doing a step by step solution to a common induction problem. Also it is show and given in many books in the study of number theory and reasoning and proofs.

2 Formula

We are given the formula

$$
\sum_{n=1}^{\infty} n^{2}=\frac{n(2 n+1)(n+1)}{6}
$$

with n element of the natural numbers.

3 Proof:

Now we begin by running off a few terms to help see the pattern emerge.

$$
\sum_{n=1}^{\infty} 1^{2}+2^{2}+3^{3}+4^{2}+5^{2}+\cdots+n^{2}=\frac{n(2 n+1)(n+1)}{6}
$$

Let's assume that $\mathrm{n}=1$

$$
\begin{gathered}
1=\frac{1(2(1)+1)(1+1)}{6}=1 \\
1=\frac{(2+1)(1+1)}{6}=1 \\
1=\frac{6}{6}=1
\end{gathered}
$$

Next we assume that $\mathrm{n}=\mathrm{k}$ and that k is an element of of the natural numbers.An we will use this equation in the Induction hypothesis that we denote as equation 1.

$$
\sum_{k=1}^{\infty} 1^{2}+2^{2}+3^{3}+4^{+} 5^{2}+\cdots+k^{2}=\frac{k(2 k+1)(k+1)}{6}
$$

To obtain the next term, we add k square with $\mathrm{k}+1$ square to both sides of the equation.
$\sum_{k=1}^{\infty} 1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(2(k+1)+1)((k+1)+1)}{6}$
Now we simplify the formula to aide in seeing the connection.

$$
\sum_{k=1}^{\infty} 1^{2}+2^{+} 3^{2}+4^{2}+5^{2}+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

From the induction hypotheses, we use equation 1 on the left hand side (LHS) and substitute it in for the induction process.

$$
\frac{k(2 k+1)(k+1)}{6}+(k+1)^{2}=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Now we factor out a $(\mathrm{k}+1)$ on the (LHS) of the equation.

$$
\left.(k+1)\left(\frac{k(2 k+1)}{6}\right]+(k+1)\right)=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Next we combine the left hand side (LHS) equation by finding the greatest conman factor (GCF).

$$
\begin{aligned}
& (k+1)\left(\frac{k(2 k+1)}{6}+\frac{6(k+1)}{6}\right)=\frac{(k+1)(2 k+3)(k+2)}{6} \\
& (k+1)\left(\frac{k(2 k+1)+6(k+1)}{6}\right)=\frac{(k+1)(2 k+3)(k+2)}{6}
\end{aligned}
$$

The next step is that we factor the (LHS) of the equation.

$$
(k+1)\left(\frac{2 k^{2}+k+6 k+6}{6}\right)=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Then we combine like terms on the (LHS).

$$
(k+1)\left(\frac{2 k^{2}+7 k+6}{6}\right)=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Now we factor the (LHS) numerator.

$$
(k+1)\left(\frac{(2 k+3)(k+2)}{6}\right)=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Final we factor the $(\mathrm{k}+1)$ back in the (LHS) of the equation.

$$
\frac{(k+1)(2 k+3)(k+1)}{6}=\frac{(k+1)(2 k+3)(k+2)}{6}
$$

Thus we achieved what we desired.
Reference: David M.Burton, Elements of Number Theory,page 3

