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Abstract

The parameters of a fuel-optimal mission from Kerbin via Eve to an
outer planet with an arbitrary orbit radius were calculated. The ∆v gain
of performing the Eve flyby instead a direct Hohmann transfer to the
outer planet is on the order of 50 m/s. Eccentricity and inclination of
planets’ orbits were not considered.
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1 Introduction
An outer planet-bound spacecraft initially shares Kerbin’s circular orbit around
Kerbol, but must somehow raise its apoapsis to at least the orbit radius of the
outer planet.

The straightforward way to accomplish this is to burn into a Hohmann trans-
fer orbit straight from Kerbin to the target. Here, however, we shall consider
scheduling an Eve encounter along the way to the outer planet.

Going to Eve means that at the start of our journey we throw away perfectly
good ∆v on lowering our periapsis. However, there are three reasons why this
might pay off in the end. Firstly, by diving into the deep gravity well of Eve
we can increase the energy worth of our remaining ∆v. Secondly, we can get
a gravity assist from Eve, accepting some of Eve’s own momentum. Thirdly,
a transfer orbit from Eve to an outer planet is slightly lower in energy than a
transfer orbit from Kerbin since its major axis is a little shorter.

When going to Jool, we can just barely break even in terms of ∆v when we
do the Eve flyby instead of just the straight Hohmann transfer from Kerbin.
The gain in ∆v is rather insignificant considering the fewer launch windows,
longer travel time and increased effort and risk. However, with the addition of
more outer planets to KSP, we can anticipate there will be greater ∆v gains to
be had from an Eve flyby.

2 Theory
The path of the spacecraft is strung together out of the following five conic
section patches.

• Hyperbolic escape from Kerbin.

• Elliptic transfer from Kerbin to Eve.

• Hyperbolic approach to Eve.

• Hyperbolic escape from Eve.

• Elliptic transfer from Eve to outer planet.

We shall consider each patch in reverse order.

2.1 Eve to outer planet transfer
Of all the transfer orbits from Eve to an outer planet, the one that requires the
least speed as a spacecraft escapes Eve is the Hohmann transfer. Therefore, it
is in terms of ∆v the cheapest transfer orbit to enter, whether the spacecraft is
coming from Eve’s surface or all the way from Kerbin.1

The Hohmann transfer orbit is the elliptic orbit that is tangent to both
Eve’s orbit and the outer planet’s orbit. We designate as P9 the point where
the spacecraft leaves Eve and as P10 the point where it encounters the outer
planet. The velocity at either point is easily found from the vis viva equation,

1Proving this is left as an excercise for the reader.
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Figure 1: Eve to outer planet transfer orbit.

2.2 Eve escape
The next patch to consider is the hyperbolic escape orbit from Eve. P8 is where
the spacecraft leaves Eve’s sphere of influence. P7 is the periapsis of the orbit.
Its distance from Eve’s centre is rLE .

To find v8 from v9 we translate from Kerbol’s frame of reference to Eve’s
frame of reference, simply adding Eve’s orbital velocity vE ,

v8 = v9 + vE

=

√
2µS

(
1

rE
− 1

rJ + rE

)
+ vE . (3)

Next we find v7 from the conservation of orbital energy,

v7 =

√
v 2

8 +
2µE

rLE
. (4)
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Figure 2: Eve approach and escape.

2.3 Eve approach
Preceding Eve escape is the Eve approach, a hyperbolic orbit with the same pe-
riapsis as the escape orbit. At that periapsis we do a transfer burn, so although
P6 designates the same location as P7, v8 and v7 differ by the velocity added by
the burn, v∆,

v6 = v7 − v∆ . (5)

Selecting the optimal value of v∆ is addressed in subsection 2.6.
P5 is where the spacecraft enters Eve’s sphere of influence. Again, we find

v5 from the conservation of orbital engergy,

v5 =

√
v 2

6 −
2µE

rLE
. (6)

Having found the speed v5 at P5, let us then find the direction of travel, φ5.
We take Eve’s prograde direction to be 0 and right turns to be positive when
north is up. We have a formula for the angle between the asymptote and the
transverse axis of a hyperbolic orbit. Note that since one of the asymptotes
points against the direction of travel we must subtract π to find the correct
angle.

φ5 = −π + sec−1

(
rLE

µE
· v2

5 + 1

)
+ sec−1

(
rLE

µE
· v2

8 + 1

)
. (7)

4



We can then represent the velocity vector at P5 in terms of its component
along Eve’s prograde direction, with magnitude v5p, and its component along
Eve’s radial out direction, with magnitude v5r,

v5p = v5 · cosφ5 , (8)
v5r = v5 · sinφ5 . (9)

2.4 Kerbin to Eve transfer
Translating again to Kerbol’s frame of reference we find the velocity at P4, where
the spacecraft encounters Eve on the Kerbin–Eve transfer orbit,

v4p = v5p + vE , (10)
v4r = v5r . (11)

We then find the velocity at P3, where the spacecraft leaves Kerbin. v3p is
found from the conservation of angular momentum and then v3r is found from
the conservation of orbital energy,

v3p =
rE
rK
· v4p , (12)

v3r =

√
v 2

4p + v 2
4r − v

2
3p + 2

(
v 2
K − v 2

E

)
=

√(
1−

r 2
E

r 2
K

)
v 2

4p + v 2
4r + 2

(
v 2
K − v 2

E

)
. (13)
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Figure 3: Kerbin to Eve transfer orbit.
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2.5 Kerbin escape
Lastly we consider the hyperbolic escape orbit from Kerbin. Its periapsis, desig-
nated P1, is at a distance rLK from Kerbin’s centre. P2 is where the spacecraft
escapes Kerbin’s sphere of influence. To find the velocity at P2 we translate
from Kerbol’s to Kerbin’s frame of reference,

v2p = v3p − vK (14)
v2r = v3r (15)

v1 =

√
v2

2p + v2
2r +

2µK

rLK

=

√
(v3p − vK)2 + v2

3r +
2µK

rLK
(16)

rLK

P1

P2

Kerbin retrograde

Figure 4: Kerbin escape orbit.

2.6 Optimizing v∆

To find the optimal v∆ we try different values until we find the one that leads
to the minimum value of v∆ +v1. Equivalently, we can find the value of v∆ that
makes v3r go to zero. The fuel-optimal path has a Kerbin to Eve transfer orbit
that is tangent to Kerbin’s orbit.2

2.7 When to launch
It is preferable when the spacecraft reaches Eve’s orbit that Eve is actually
situated at that point on its orbit. When we know v1, we can find the right
time to launch for that to happen.

2Proving this is left as another excercise for the reader.
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From the vis viva equation we can find the semi-major axis a of the Kerbin
to Eve transfer orbit. Then we find its eccentricity e. From these parameters
of the transfer orbit’s geometry we can find the true anomaly θ and, from that,
the eccentric anomaly E of the Eve encounter.3 The true anomaly of Kerbin at
launch is π.

a =
2µSrE

2µS − rEv 2
1

, (17)

e =
rK
a
− 1 , (18)

θ = − arccos

(
a(1− e2)− rE

e · rE

)
, (19)

E = − arccos

(
e+ cos θ

1 + e cos θ

)
. (20)

We then find the mean anomaly M from the Kepler equation,

M = E − e sinE . (21)

We also need to know the orbital periods TE , TJ , TKE and TEJ of respec-
tively Eve’s orbit, the outer planet’s orbit, the Kerbin to Eve transfer orbit and
the Eve to outer planet transfer orbit.

TKE = 2π

√
a3

µS
, (22)

TEJ = 2π

√
(rJ + rE)3

8µS
. (23)

(24)

The travel time from Kerbin to Eve is (π−M) ·TKE/2π and the travel time
from Eve to the outer planet is TEJ/2. The true anomaly of the Eve encounter
is θ and the true anomaly of the outer planet encounter is θ + π. Now we can
find the true anomalies θE and θJ at which we want respectively Eve and the
outer planet at launch time,

θE = θ − (M − π) · TKE

TE
, (25)

θJ = θ + π − (M − π) · TKE + π · TEJ

TJ
. (26)

To escape in Kerbin’s retrograde direction, we burn when at an angle −φ1

counterclockwise from the its prograde direction,

−φ1 = sec−1

(
rLK

µK
· v2

1 + 1

)
. (27)

3The relevant equations are given on Wikipedia’s page for True anomaly.
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3 Implementation and results

3.1 Implementation
To calculate the parameters of the described fuel optimal mission a Python
script, here included as appendix A, was written. It was run for a range of
values of rJ , the radius of the outer planet’s orbit.

The mission is assumed to start from Kerbin orbit at an altitude of 100 km.
The periapsis of the Eve flyby is also assumed to have an altitude of 100 km.

3.2 Positions of planets at launch
Figure 5 shows how the relevant planets should be positioned at launch. The
optimal position of Eve does not vary significantly with rJ over the considered
range. For most of the range, launch should be scheduled when Eve is 45.52◦

behind Kerbin.
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Figure 5: Plots of optimal position at launch as a function of outer planet orbit
radius. The scale of the radial dimension is 1011 m. Black circles at 0.4 and
0.69 mark orbital radii of Dres and Jool.
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3.3 ∆v budget
Figure 6 shows the optimal v1 and v1 + |v∆| as a function of rJ .
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Figure 6: Plots of optimal v1 and v1 + |v∆| as a function of outer planet orbit
radius. Vertical lines at 0.4 and 0.69 mark orbital radii of Dres and Jool.

Figure 7 shows the ∆v gain of performing an Eve flyby instead of burning
into a direct Hohmann transfer from Kerbin to the outer planet.
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Figure 7: Plot of the gained ∆v as a function of outer planet orbit radius.
Vertical lines at 0.4 and 0.69 mark orbital radii of Dres and Jool.
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A Script for calculations

from math import ∗
import sys

muS = 1.1723328 e18

rLK = 700 e3
rK = 13599840256.0
muK = 3.5316 e12
vK = sq r t (muS/rK)

rLE = 800 e3
rE = 9.83 e9
muE = 8.1717302 e12
vE = sq r t (muS/rE )
TE = 5657995

rJ = f l o a t ( sys . argv [ 1 ] ) ∗ 1 e9
TJ = 2∗ pi ∗ s q r t ( rJ ∗∗3/muS)
vJ = sq r t (muS/ rJ )
# rJ fo r Joo l i s 68.8 e9
# TJ fo r Joo l i s 104661432

v9 = sq r t (muS∗(2/ rE − 2/( rE+rJ ) ) )
v8 = v9 − vE
v7 = sq r t ( v8∗∗2+2∗muE/rLE)

v3r2 = 10 .0
vDeltaLo = 0 .0
vDeltaHi = v7−s q r t (2∗muE/rLE)
vDelta = 0 .0
while ( v3r2 >= 0.01 or v3r2 < 0 ) :

vDelta = ( vDeltaLo+vDeltaHi )/2
v6 = v7−vDelta
v5 = sq r t ( v6∗∗2−2∗muE/rLE)
phiEi = −pi+acos (1/( v8∗∗2∗rLE/muE+1))+acos (1/( v5∗∗2∗rLE/muE+1))
v5p = v5∗ cos ( phiEi )
v5r = v5∗ s i n ( phiEi )
v4p = v5p + vE
v4r = v5r
v4 = sq r t ( v4p∗∗2+v4r ∗∗2)
v3p = v4p∗rE/rK
v3r2 = v4∗∗2−2∗muS/rE+2∗muS/rK−v3p∗∗2
i f ( v3r2 > 0 ) :

vDeltaLo = vDelta
else :

vDeltaHi = vDelta
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v3r = sq r t ( v3r2 )
v2p = v3p − vK
v2r = v3r
v2 = sq r t ( v2p∗∗2+v2r ∗∗2)
v1 = sq r t ( v2∗∗2+2∗muK/rLK)

a = 2∗muS∗rE/(2∗muS−rE∗v1 ∗∗2)
e = rK/a−1

theta = 2∗pi−acos ( ( a∗(1−e∗∗2)−rE )/ ( e∗rE ) )
E = −acos ( ( e+cos ( theta ))/(1+ e∗ cos ( theta ) ) )
M = 2∗ pi+E−e∗ s i n (E)

TKE = 2∗ pi ∗ s q r t ( a∗∗3/muS)
TEJ = 2∗ pi ∗ s q r t ( ( rJ+rE )∗∗3/(8∗muS) )

thetaE = theta−(M−pi )∗TKE/TE
thetaJ = theta+pi −((M−pi )∗TKE+pi ∗TEJ)/TJ

phi2 = −acos ( v2p/v2 )
phi1 = phi2+pi−acos (1/( v2∗∗2∗rLK/muK+1))

e1 = 1/ cos ( phi2−phi1+pi )
a1 = −rLK/( e−1)

vH = sqr t (muS∗(2/rK − 2/(rK+rJ ) ) )
v1H = sqr t ( (vH−vK)∗∗2+2∗muK/rLK)

print ( " vDelta : ␣%.2 f ␣m/ s "%vDelta )
print ( "Eve␣ encounter ␣ po s i t i o n : ␣%.2 f ␣deg"%(theta ∗180/ pi −180))
print ( "Eve␣ at ␣ launch : ␣%.2 f ␣deg"%(thetaE ∗180/ pi −180))
print ( "Outer␣ p lanet ␣ at ␣ launch : ␣%.2 f ␣deg"%(thetaJ ∗180/ pi −180))
print ( " phi1 : ␣%.2 f ␣deg"%(phi1 ∗360/6 .28) )

print ( "v1 : ␣%.2 f ␣m/ s "%v1 )
print ( "v1+vDelta : ␣%.2 f ␣m/ s "%(v1+vDelta ) )

print ( "Di rec t ␣Hohmann␣ t r a n s f e r : ␣%.2 f ␣m/ s "%v1H)
print ( "Gain␣ from␣Eve␣ f l yby : ␣%.2 f ␣m/ s "%(v1H−v1−vDelta ) )
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