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Abstract

We revisit the results of the recent Reproducibility Project: Psychology by the Open
Science Collaboration. We compute Bayes factors—a quantity that can be used to
express comparative evidence for an hypothesis but also for the null hypothesis—for a
large subset (N = 72) of the original papers and their corresponding replication
attempts. In our computation, we take into account the likely scenario that publication
bias had distorted the originally published results. Overall, 75% of studies gave
qualitatively similar results in terms of the amount of evidence provided. However, the
evidence was often weak (i.e., Bayes factor < 10). The majority of the studies (64%)
did not provide strong evidence for either the null or the alternative hypothesis in either
the original or the replication, and no replication attempts provided strong evidence in
favor of the null. In all cases where the original paper provided strong evidence but the
replication did not (15%), the sample size in the replication was smaller than the
original. Where the replication provided strong evidence but the original did not (10%),
the replication sample size was larger. We conclude that the apparent failure of the
Reproducibility Project to replicate many target effects can be adequately explained by
overestimation of effect sizes (or overestimation of evidence against the null hypothesis)
due to small sample sizes and publication bias in the psychological literature. We
further conclude that traditional sample sizes are insufficient and that a more
widespread adoption of Bayesian methods is desirable.

1 Introduction 1

The summer of 2015 saw the first published results of the long-awaited Reproducibility 2

Project: Psychology by the Open Science Collaboration [1] (henceforth OSC). In an 3

attempt to closely replicate 100 studies published in leading journals, fewer than half 4

were judged to successfully replicate. The replications were pre-registered in order to 5

avoid selection and publication bias and were evaluated using multiple criteria. When a 6

replication was judged to be successful if it reached statistical significance (i.e., p < .05), 7

only 39% were judged to have been successfully reproduced. Nevertheless, the paper 8

reports a .51 correlation between original and replication effect sizes, indicating some 9

degree of robustness of results (see their Fig. 3). 10

PLOS 1/16



Etz, A. & Vandekerckhove, J. (2016). A Bayesian perspective on the Reproducibility Project: Psychology.
PLOS ONE, 11, e0149794, doi: 10.1371/journal.pone.0149794

Much like the results of the project, the reactions in media and social media have 11

been mixed. In a first wave of reactions, headlines ranged from the dryly descriptive 12

“Scientists replicated 100 psychology studies, and fewer than half got the same 13

results” [2] and “More than half of psychology papers are not reproducible” [3] to the 14

crass “Study reveals that a lot of psychology research really is just ‘psycho-babble’ ” [4]. 15

A second wave of reactions shortly followed. Editorials with titles such as “Psychology 16

is not in crisis” [5] and a statement by the American Psychological Association [6] were 17

quick to emphasize the possibility of many hidden moderators that rendered the 18

replications ineffective. OSC acknowledges this: “unanticipated factors in the sample, 19

setting, or procedure could still have altered the observed effect magnitudes,” but it is 20

unclear what, if any, bearing this has on the robustness of the theories that the original 21

publications supported. 22

In addition to the unresolved possibility of hidden moderators, there is the issue of 23

lacking statistical power. The statistical power of an experiment is the frequency with 24

which it will yield a statistically significant effect in repeated sampling, assuming that 25

the underlying effect is of a given size. All other things—such as the design of the study 26

and the true size of the effect—being equal, statistical power is determined by an 27

experiment’s sample size. Low-powered research designs undermine the credibility of 28

statistically significant results in addition to increasing the probability of nonsignificant 29

ones (see [7] and the references therein for a detailed argument); furthermore, 30

low-powered studies generally provide only small amounts of evidence (in the form of 31

weak Bayes factors; see below). 32

Among the insights reported in OSC is that “low-power research designs combined 33

with publication bias favoring positive results together produce a literature with 34

upwardly biased effect sizes,” and that this may explain why replications—unaffected by 35

publication bias—show smaller effect sizes. Here, we formally evaluate that insight, and 36

use the results of the Reproducibility Project: Psychology to conclude that publication 37

bias and low-powered designs indeed contribute to the poor reproducibility, but also 38

that many of the replication attempts in OSC were themselves underpowered. While the 39

OSC aimed for a minimum of 80% power (with an average of 92%) in all replications, 40

this estimate was based on the observed effect size in the original studies. In the likely 41

event that these observed effect sizes were inflated (see next section), the sample size 42

recommendations from prospective power analysis will have been underestimates, and 43

thus replication studies will tend to find mostly weak evidence as well. 44

1.1 Publication bias 45

Reviewers and editors in psychology journals are known to put a premium on ‘positive’ 46

results. That is, they prefer studies in which a statistically significant result is used to 47

support the existence of an effect. Nearly six decades ago, Sterling [8] noted this 48

anomaly in the public record: In four prominent psychology journals, 95 to 99% of 49

studies that performed a significance test rejected the null hypothesis (i.e., H0). 50

Sterling concludes by noting two key findings, “Experimental results will be printed 51

with a greater probability if the relevant test of significance rejects H0,” and, “The 52

probability that an experimental design will be replicated becomes very small once such 53

an experiment appears in print” (p. 33). 54

Moreover, it is a truism that studies published in the psychology literature are only 55

a subset of the studies psychologists conduct, and various criteria are used to determine 56

if a study should be published in a given journal. Studies that do not meet the criteria 57

are relegated to lab file drawers [9]. A selective preference for publishing studies that 58

reject H0 is now known as publication bias, and is recognized as one cause of the current 59

crisis of confidence in psychology [10]. 60

When journals selectively publish only those studies that achieve statistical 61
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significance, average published effect sizes inevitably inflate because the significance 62

threshold acts as a filter; only the studies with the largest effect sizes have sufficiently 63

low p-values to make it through to publication. Studies with smaller, non-significant 64

effects are rarely published, driving up the average effect size [11]. Readers who wish to 65

evaluate original findings and replications alike must take into account the fact that our 66

“very publication practices themselves are part and parcel of the probabilistic processes 67

on which we base our conclusions concerning the nature of psychological 68

phenomena” [12] (p. 427). Differently put, the publication criteria should be considered 69

part of the experimental design [13]. For the current project, we choose to account for 70

publication bias by modeling the publication process as a part of the data collection 71

procedure, using a Bayesian model averaging method proposed by Guan and 72

Vandekerckhove [14] and detailed in Section 2.2 below. 73

2 Methods 74

2.1 The Bayes factor 75

To evaluate replication success we will make use of Bayes factors [15, 16]. The Bayes 76

factor (B) is a tool from Bayesian statistics that expresses how much a data set shifts 77

the balance of evidence from one hypothesis (e.g., the null hypothesis H0) to another 78

(e.g., the alternative hypothesis HA). Bayes factors require researchers to explicitly 79

define the models under comparison. 80

In this report we compare the null hypothesis of no difference against an alternative 81

hypothesis with a potentially nonzero effect size. Our prior expectation regarding the 82

effect size under HA is represented by a normal distribution centered on zero with 83

variance equal to 1 (this is a unit information prior, which carries a weight equivalent to 84

approximately one observation [17]). 85

Other analysts could reasonably choose different prior distributions when assessing 86

these data, and it is possible they would come to different conclusions. For example, in 87

the case of a replication study specifically, a reasonable choice for the prior distribution 88

of HA is the posterior distribution of the originally reported effects [18]. Using the 89

original study’s posterior as the replication’s prior asks the question, “Does the result 90

from the replication study fit better with predictions made by a null effect or by the 91

originally reported effect?” A prior such as this would lend itself to more extreme values 92

of the Bayes factor because the two hypotheses make very different predictions; the null 93

hypothesis predicts replication effect sizes close to zero, whereas the original studies’ 94

posterior distributions will typically be centered on relatively large effect sizes and 95

hence predict large replication effect sizes. As such, Bayes factors for replications that 96

find small-to-medium effect sizes will often favor H0 (δ=0) over the alternative model 97

that uses the sequential prior because the replication result poorly fits the predictions 98

made by the original posterior distribution, whereas small-to-medium effects will yield 99

less forceful evidence in favor of H0 over the alternative model using the unit 100

information prior that we apply in this analysis. 101

There are two main reasons why, in the present paper, we choose to use the unit 102

information prior over this sequential prior. First, our goal is not to evaluate how well 103

empirical results reproduce, but rather to see how the amount of evidence gathered in 104

an original study compares to that found in an independent replication attempt. This 105

question is uniquely addressed by computing Bayes factors on two data sets, using 106

identical priors. Compared to the sequential prior, the unit information prior we have 107

chosen for our analysis is somewhat conservative, meaning that it requires more 108

evidence before strongly favoring H0 in a replication study. Indeed, results presented in 109

a blog post by the first author [19] suggest that when a sequential prior is used 110
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approximately 20% of replications show strong evidence favoring H0, as opposed to no 111

replications strongly favoring H0 with the unit information prior used in this report. Of 112

course, it is to be expected that different analysts obtain different answers with different 113

priors, because they are asking different questions (as Sir Harold Jeffreys [20] famously 114

quipped: “It is sometimes considered a paradox that the answer depends not only on 115

the observations but on the question; it should be a platitude,” p. vi). 116

A second reason we do not use the sequential prior in this report is that it does not 117

take into account publication bias. Assuming that publication bias has a greater effect 118

on the original studies than it did on the (pre-registered, certain to be published 119

regardless of outcome) replications, the observed effect sizes in original and replicate 120

studies are not expected to be equal. Using the original posterior distribution as a prior 121

in the replication study would penalize bias in the original result; since the replication 122

attempts will nearly always show smaller effect sizes than the biased originals, it will be 123

more common to ‘fail to replicate’ these original findings (by accumulating evidence in 124

favor of H0 in the replication). However, here we are interested in evaluating the 125

evidential support for the effects in the replication, rather than using them to quantify 126

the effect of publication bias. In other words, we are interested in answering the 127

following question: If we treat the two results as independent, do they provide similar 128

degrees of evidence? 129

Interpretation of the Bayes factor. The Bayes factor is most conveniently 130

interpreted as the degree to which the data sway our belief from one to the other 131

hypothesis. In a typical situation, assuming that the reader has no reason to prefer the 132

null hypothesis over the alternative before the study (i.e., 1 :1 odds, or both have a prior 133

probability of .50), a Bayes factor of 3 in favor of the alternative will change their odds 134

to 3:1 or a posterior probability of .75 for HA. Since a Bayes factor of 3 would carry a 135

reader from equipoise only to a 75% confidence level, we take this value to represent 136

only weak evidence. Put another way, accepting a 75% posterior probability for HA 137

means that the reader would accept a one-in-four chance of being wrong. To put that in 138

a context: that is the probability of correctly guessing the suit of a randomly-drawn 139

card; and the researcher would reasonably prefer to bet on being wrong than on a fair 140

die coming up six. That is to say, it is evidence that would not even be convincing to an 141

uninvested reader, let alone a skeptic (who might hold, say, 10:1 prior odds against 142

HA). Table 1 provides posterior probabilities associated with certain Bayes factors B 143

assuming prior odds of 1 :1. In that table, we have also added some descriptive labels for 144

Bayes factors of these magnitudes (these labels are similar in spirit to those suggested 145

by Jeffreys [20]). Finally, it bears pointing out that if a researcher wants to move the 146

probability of H0 from 50% to below 5%, a Bayes factor of at least 19 is needed. 147

It is important to keep in mind that the Bayes factor as a measure of evidence must 148

always be interpreted in the light of the substantive issue at hand: For extraordinary 149

claims, we may reasonably require more evidence, while for certain situations—when 150

data collection is very hard or the stakes are low—we may satisfy ourselves with smaller 151

amounts of evidence. For our purposes, we will only consider Bayes factors of 10 or 152

more as evidential—a value that would take an uninvested reader from equipoise to a 153

91% confidence level (a level at which an unbiased, rational reader is willing to bet up 154

to ten cents on HA to win back one cent if they are right). Since the Bayes factor 155

represents the evidence from the sample, readers can take these Bayes factors and 156

combine them with their own personal prior odds to come to their own conclusions. 157
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Table 1. Descriptive labels for certain Bayes factors.

Label B p(HA|data)a
Strongly support HA 10 91%
Weakly support HA 3 75%
Ambiguous information 1 50%
Weakly support H0

1/3 25%
Strongly support H0

1/10 9%
a: p(HA|data) is the posterior probability of HA as-
suming prior equiprobability between H0 and HA.

2.2 Mitigation of publication bias 158

The academic literature is unfortunately biased. Since studies in which the null 159

hypothesis is confidently rejected are published at a higher rate than those in which it is 160

not, the literature is “unrepresentative of scientists’ repeated samplings of the real 161

world” [21]. A retrospective analysis of published studies must therefore take into 162

account the fact that these studies are somewhat exceptional in having passed the 163

so-called statistical significance filter [11]. 164

Guan and Vandekerckhove [14] define four censoring functions that serve as models 165

of the publication process. Each of these censoring functions formalizes a statistical 166

significance filter, and each implies a particular expected distribution of test statistics 167

that make it to the literature. The first, a no-bias model, where significant and 168

non-significant results are published with equal probability, implies the typical central 169

and non-central t distributions (for null and non-null effects, respectively). The second, 170

an extreme-bias model, indexes a process where non-significant results are never 171

published. This model assigns nonzero density only to regions where significant results 172

occur (i.e., p < .05) and nowhere else. The third, a constant-bias model, indexes a 173

process where non-significant results are published at a rate that is some constant π 174

(0 ≤ π ≤ 1) times the rate at which significant results are published. These distributions 175

look like typical t distributions but with the central (non-significant) region weighted 176

down, creating large spikes in density over critical regions in the t-distribution. The 177

fourth, an exponential-bias model, indexes a process where the probability that 178

non-significant results are published decreases exponentially as (p− α) increases (i.e., 179

“marginally significant” results have a moderately high chance of being published). 180

These distributions have spikes in density around critical t-values. Fig. 1 shows the 181

predicted distribution of published t values under each of the four possible censoring 182

functions, with and without a true effect. 183

None of these censoring functions are likely to capture the exact nature of the 184

publication process in all of the cases we consider, but we believe they span a reasonable 185

range of possible processes. Assuming that these four models reasonably represent 186

possible statistical significance filters, we can use a Bayesian model averaging method to 187

compute a single mitigated Bayes factor (BM ) that takes into account that a biased 188

process may have led to the published effect. The procedure essentially serves to raise 189

the evidentiary bar for published studies if publication bias was not somehow prevented 190

(e.g., through pre-registration). A unique feature of this method (compared to other 191

bias mitigation methods such as PET-PEESE [22]) is that it allows us to quantify 192

mitigated evidence for or against the null hypothesis on a continuous scale—a feature 193

that will become useful when we compare original and replicated studies, below. 194

Calculation of the mitigated Bayes factor. To calculate BM , we first define a 195

likelihood function in which the t distribution is multiplied by a weighting function w, 196
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Figure 1. Predicted distributions of t statistics in the literature. Predicted
distributions are shown under the four censoring mechanisms we consider (columns) and
two possible states of nature (top row: H0 true (δ = 0); bottom row: H0 false (δ 6= 0)).

so that 197

p+
w (x|n, δ, θ) ∝ tn (x|δ)w (x|θ) . (1)

Here, x is the reported t-value, n stands for the associated degrees of freedom, δ is the 198

effect size parameter of the noncentral t distribution, and w is one of the four censoring 199

functions which has optional parameters θ (see Table 2 for details regarding weighting 200

functions). Equation 1 describes four possible models, each with some effect size δ. 201

Together, these four models form the alternative hypothesis HA. We construct four 202

additional models in which δ = 0 (i.e., there is no underlying effect): 203

p−w (x|n, θ) = p+
w (x|n, δ = 0, θ). Here the t distribution reduces to the central t, and 204

these four models together form the null hypothesis H0. 205

Second, we obtain the Bayesian evidences E+
w and E−

w by integrating the likelihood
for each model over the prior:

E+
w =

∫
Θ

∫
∆

p+
w (x|n, δ, θ) p(δ)p(θ)dδdθ

E−
w =

∫
Θ

p−w (x|n, θ) p(θ)dθ.

E+
w and E−

w are also known as the marginal likelihoods of these models (i.e., the 206

probability density of the data under the model, as a prior-weighted average over all 207

possible parameter constellations), and they can be conveniently approximated with 208

Gaussian quadrature methods [23]. 209

Table 2. The four weighting functions.

Model Weight w if p > .05 Parameters θ
No bias w(x) = 1 None
Extreme bias w(x) = 0 None
Constant bias w(x|π) = π π
Exponential bias w(x|λ) = e(−λ(p−.05)) λ
Note: w(x) is always 1 for results that are statistically significant
at the .05-level. The dependency on the design and data properties
that determine statistical significance is implied.
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Finally, the posterior probability of each hypothesis can be calculated by (1) 210

multiplying each evidence value with the corresponding model prior (where a ‘model’ is 211

any one of the eight possible combinations of weighting function w and the null or 212

alternative hypothesis; see Fig. 1); (2) dividing each of those products with the sum of 213

all such products for all models; and (3) summing the posterior probabilities for all 214

models within an hypothesis. This can be rearranged to yield the following expression 215

for the posterior: 216

Pr (HA|x) = Pr (HA)×
∑
w Pr (w)E

+
w∑

k Pr (k)
[
Pr (HA)E+

k + Pr (H0)E
−
k

] ,
where Pr (w) is the prior probability of censoring function w and Pr (HA) is the prior 217

probability that there is a nonzero effect. To obtain the Bayes factor, we restate in 218

terms of posterior and prior ratios to obtain the simple expression: 219

Pr (HA|x)
Pr (H0|x)︸ ︷︷ ︸

Posterior odds

=
Pr (HA)
Pr (H0)︸ ︷︷ ︸
Prior odds

×
∑
w Pr(w)E

+
w∑

w Pr(w)E
−
w︸ ︷︷ ︸

Mitigated Bayes factor

,

where the second factor on the right hand side now represents the mitigated Bayes 220

factor BM . Full details and MATLAB/Octave code to implement the procedure can be 221

found here: http://bit.ly/1Nph9xQ. 222

2.3 Sample 223

We limited our analysis to studies that relied on univariate tests in order to apply the 224

statistical mitigation method developed by Guan and Vandekerckhove [14]. A total of 225

N = 72 studies were eligible. This includes all studies that relied on t-tests, univariate 226

F -tests, and univariate regression analyses. This limits the generality of our conclusions 227

to these cases, which fortunately constitute the bulk of studies in the Reproducibility 228

Project: Psychology. A list of included studies and their inferential statistics is provided 229

in the Supporting Information. Additionally, we conducted a sensitivity analysis varying 230

the scale of the prior distribution among reasonable values (.5 to 2.0); this revealed no 231

concerns that affect the conclusions or recommendations of the present analysis. 232

3 Results 233

3.1 Evidence in the original studies, taken at face value 234

For the original studies, we first computed “face value” Bayes factors that do not take 235

into account the possibility of a biased publication process. By this measure, we find 236

that 31 of the original studies (43%) provide strong support for the alternative 237

hypothesis (B ≥ 10). No studies provide strong evidence for the null hypothesis. The 238

remaining 57% provide only weak evidence one way or the other. 239

The small degrees of evidence provided by these published reports, taken at face 240

value, are consistent with observations by Wetzels et al. [24] as well as the cautionary 241

messages by Johnson [25] and Maxwell, Lau, and Howard [26]. 242

3.2 Evidence in the original studies, corrected for publication 243

bias 244

When we apply the statistical mitigation method of Guan and Vandekerckhove [14], the 245

evidence for effects generally shrinks. After correction for publication bias, only 19 246
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(26%) of the original publications afford strong support for the alternative hypothesis 247

(BM ≥ 10). A sizable majority of studies (53, or 74%) provide only ambiguous or weak 248

information, with none finding strong evidence in favor of the null. 249

3.3 Evidence in the replication studies 250

The set of replication studies was entirely preregistered, with all data sets fully in the 251

open and no opportunity for publication bias to muddy the results. Hence, no 252

mitigation of bias is called for. Of the 72 replication studies, 15 (21%) strongly support 253

the alternative hypothesis (BR ≥ 10) and none strongly support the null. Twenty-seven 254

(38%) provide only ambiguous information, and another 25 (35%) provide weak 255

evidence for the null hypothesis. 256

3.4 Consistency of results 257

One of the stated goals of the Reproducibility Project: Psychology was to test whether 258

previously found effects would obtain in an identical replication of a published study. 259

Focusing on Bayesian evidence, we can now evaluate whether similar studies support 260

similar conclusions. In 46 cases (64%), neither the original study nor the replication 261

attempt yielded strong evidence (i.e., B ≥ 10). In only 8 cases (11%) did both the 262

original study and the replication strongly support the alternative hypothesis. In 11 263

cases (15%) the original study strongly supported the alternative but the replication did 264

not, and in 7 cases (10%) the replication provided strong evidence for the alternative 265

whereas the original did not. The frequencies of these Bayes factor transitions are given 266

in Table 3. 267

Fig. 2 shows (in logarithmic coordinates) the Bayes factor of the replication BR 268

plotted against the bias-corrected Bayes factor of the original result BM . The majority 269

of cases in which neither the original nor the replication provided strong evidence are 270

displayed as the cluster of small crosses in the lower left of the figure. Circles represent 271

cases where at least one of the attempts yielded strong evidence. 272

The observation that there are only 8 cases where both original and replication find 273

strong evidence for an effect, while there are 18 cases in which one does and the other 274

does not, seems at first to indicate a large degree of inconsistency between pairs of 275

otherwise similar studies. To explain this inconsistency, Fig. 2 highlights a major 276

difference between each original and replication: The chosen sample size. The size of 277

the circles indicates the ratio of the replication sample size to the original sample size. 278

In each of the 11 cases where the original study supported the alternative but the 279

replication did not, the original study had the larger sample size. In each of the 7 cases 280

where the replication provided strong evidence for the alternative but the original did 281

not, it was the replication that had the larger sample size. 282

Table 3. Consistency of Bayes factors across original and replicate studies. Columns
indicate the magnitude of the mitigated Bayes factor from the original study, and rows
indicate the magnitude of the Bayes factor obtained in the replication project.

Mitigated Bayes factor (original study)
0− 1/10 1/10− 1/3 1/3− 3 3− 10 10−∞ sum

Replication 0 − 1/10 0 0 0 0 0 0
study 1/10 − 1/3 0 0 18 4 3 25

“face-value” 1/3 − 3 0 0 16 4 7 27
Bayes 3 − 10 0 0 3 1 1 5
factor 10 − ∞ 0 1 6 0 8 15

sum 0 1 43 9 19 72
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Figure 2. Evidence resulting from replicated studies plotted against
evidence resulting from the original publications. For the original publications,
evidence for the alternative hypothesis was calculated taking into account the possibility
of publication bias. Small crosses indicate cases where neither the replication nor the
original gave strong evidence. Circles indicate cases where one or the other gave strong
evidence, with the size of each circle proportional to the ratio of the replication sample
size to the original sample size (a reference circle appears in the lower right). The area
labeled ‘replication uninformative’ contains cases where the original provided strong
evidence but the replication did not, and the area labeled ‘original uninformative’
contains cases where the reverse was true. Two studies that fell beyond the limits of the
figure in the top right area (i.e., that yielded extremely large Bayes factors both times)
and two that fell above the top left area (i.e., large Bayes factors in the replication only)
are not shown. The effect that relative sample size has on Bayes factor pairs is shown
by the systematic size difference of circles going from the bottom right to the top left.
All values in this figure can be found in S1 Table.
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4 Discussion 283

Small sample sizes and underpowered studies are endemic in psychological science. 284

Publication bias is the law of the land. These two weaknesses of our field have conspired 285

to create a literature that is rife with false alarms [27]. From a Bayesian reanalysis of 286

the Reproducibility Project: Psychology, we conclude that one reason many published 287

effects fail to replicate appears to be that the evidence for their existence was 288

unacceptably weak in the first place. 289

Crucially, our analysis revealed no obvious inconsistencies between the original and 290

replication results. In no case was an hypothesis strongly supported by the data of one 291

team but contradicted by the data of another. In fact, in 75% of cases the replication 292

study found qualitatively similar levels of evidence to the original study, after taking 293

into account the possibility of publication bias. In many cases, one or both teams 294

provided only weak or ambiguous evidence, and whenever it occurred that one team 295

found strong evidence and the other did not, this was easily explained by (sometimes 296

large) differences in sample size. The apparent discrepancy between the original set of 297

results and the outcome of the Reproducibility Project can be adequately explained by 298

the combination of deleterious publication practices and weak standards of evidence, 299

without recourse to hypothetical hidden moderators. 300

The Reproducibility Project: Psychology is a monumental effort whose preliminary 301

results are already transforming the field. We conclude with the simple recommendation 302

that, whenever possible, empirical investigations in psychology should increase their 303

planned replication sample sizes beyond what is implied by power analyses based on 304

effect sizes in the literature. Our analysis in that sense echoes that of Fraley and 305

Vazire [28]. 306

Decades of reliance on orthodox statistical inference—which is known to overstate 307

the evidence against a null hypothesis [29–32]—have obfuscated the widespread problem 308

of small samples in psychological studies in general and in replication studies specifically. 309

While 92% of the original studies reached the statistical significance threshold (p < .05), 310

only 43% met our criteria for strong evidence, with that number shrinking further to 311

26% when we took publication bias into account. Furthermore, publication bias inflates 312

published effect sizes. If this inflationary bias is ignored in prospective power 313

calculations then replication attempts will systematically tend to be underpowered, and 314

subsequently will systematically obtain only weak or ambiguous evidence. This appears 315

to have been the case in the Reproducibility Project: Psychology. 316

A major selling point of Bayesian statistical methods is that sample sizes need not 317

be determined in advance [33], which allows analysts to monitor the incoming data and 318

stop data collection when the results are deemed adequately informative; see 319

Wagenmakers et al. [34] for more detail and see Matzke et al. [35] for an implementation 320

of this kind of sampling plan, and also see Schönbrodt et al. [36] for a detailed 321

step-by-step guide and discussion of this design. Subsequently, if the planned sample 322

size is reached and the results remain uninformative, more data can be collected or else 323

researchers can stop and simply acknowledge the ambiguity in their results. Free and 324

easy-to-use software now exists that allows this brand of sequential analysis (e.g., 325

JASP [37]). 326

This is the first of several retrospective analyses of the Reproducibility Project data. 327

We have focused on a subset of the reproduced studies that are based on univariate 328

tests in order to account for publication bias. Other retrospectives include those that 329

focus on Bayes factors and Bayesian effect size estimates [38]. 330
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Table 1: Relevant statistics for each of the 72 included studies. Note that
Bayes factors are presented on the log10 scale, so positive values favor HA and
negative values favor H0; | log10(BF )| > 1 indicate strong evidence favoring the
respective hypothesis.

study original replicate log10 Bayes factor
number df t-value df t-value original mitigated replicate

1 13 2.6665 28 0.7937 0.6441 0.1108 -0.3291
2 23 3.7027 23 1.1314 1.5810 0.8406 -0.1752
3 24 2.3000 31 1.2272 0.4905 -0.0513 -0.1799
4 190 3.2388 268 0.1000 1.3270 0.5640 -0.8735
5 31 2.8948 47 0.9327 0.9802 0.3126 -0.3767
6 23 3.5500 31 2.4000 1.4556 0.7298 0.5672
7 99 10.1800 14 0.4960 13.9830 13.1400 -0.2826
8 37 4.1267 31 0.6197 2.2564 1.4573 -0.3953
10 28 5.1662 29 6.7283 3.0554 2.2314 4.5391
11 21 4.1593 29 2.8397 1.8813 1.1144 0.9241
15 94 1.9290 241 3.9550 0.0730 -0.1539 2.3326
19 31 3.7683 19 1.9134 1.7949 1.0271 0.2423
20 94 2.2294 106 0.2000 0.3236 -0.2641 -0.7108
24 152 4.8141 48 2.0543 3.7866 2.9503 0.2679
26 94 1.5811 92 1.3964 -0.1753 -0.3290 -0.2842
27 31 2.2738 70 3.4326 0.4696 -0.0854 1.6253
28 31 2.0248 90 0.9849 0.2879 0.0638 -0.4829
29 7 2.8920 14 3.7080 0.5192 0.0899 1.2588
32 36 4.7833 37 3.3347 2.9577 2.1352 1.4245
33 39 3.7700 39 2.0800 1.8938 1.1147 0.3089
36 20 4.5596 20 4.1653 2.1323 1.3475 1.8434
37 11 2.1909 17 1.5395 0.3697 0.1730 0.0476
44 67 3.0800 176 2.0160 1.2134 0.4831 0.0398
48 92 -2.2200 192 -0.7255 0.3186 -0.2666 -0.7393
49 34 2.3833 86 0.2828 0.5528 -0.0301 -0.6593
52 131 2.4062 111 0.9950 0.4373 -0.1962 -0.5215
53 31 2.2672 73 0.6573 0.4646 -0.0891 -0.5524
56 99 4.0768 38 -0.2600 2.5232 1.7072 -0.4970
58 182 2.2891 278 0.6132 0.2790 -0.3413 -0.8382
61 108 -2.3400 220 0.0700 0.4038 -0.2116 -0.8509
63 68 2.3495 145 0.8911 0.4744 -0.1317 -0.6207
65 41 3.0659 131 0.1342 1.1730 0.4637 -0.7584
68 116 2.0372 222 0.0447 0.1246 -0.4201 -0.8525
71 373 4.4000 175 0.9730 2.9768 2.1537 -0.6328
72 257 3.4029 247 0.7000 1.5031 0.7229 -0.8005
81 90 2.6420 137 1.1958 0.7253 0.0539 -0.4730
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Table 2: Relevant statistics for each of the 72 included studies (cont’d).
study original replicate log10 Bayes factor
number df t-value df t-value original mitigated replicate

87 51 3.0757 47 0.0894 1.2009 0.4805 -0.5511
89 26 0.7200 26 0.1500 -0.3374 -0.3756 -0.4331
93 83 3.0500 68 -1.1240 1.1752 0.4430 -0.3673
94 26 1.8700 59 2.3250 0.1981 0.0087 0.4679
97 73 3.4914 1486 1.4248 1.7004 0.9244 -0.9051
106 34 2.4083 45 1.5340 0.5730 -0.0149 -0.0775
107 84 2.0900 156 1.3180 0.2209 -0.3317 -0.4358
110 278 11.1077 142 1.0909 20.9560 20.1120 -0.5321
111 55 2.6230 116 2.4960 0.7462 0.0937 0.5443
112 9 2.9496 9 3.4059 0.6473 0.1493 0.8169
113 124 10.3600 175 15.6400 15.4490 14.6050 31.4220
114 30 3.8066 30 4.7191 1.8159 1.0472 2.7092
115 31 3.2300 8 -1.4260 1.2825 0.5684 0.0489
116 172 3.9400 139 4.0200 2.3526 1.5385 2.4698
118 111 2.3046 158 0.6156 0.3665 -0.2416 -0.7251
120 29 2.2123 41 1.6533 0.4258 -0.1123 0.0091
122 7 2.7600 16 -9.5900 0.4803 0.0636 3.8735
124 34 2.4269 68 0.2828 0.5880 -0.0035 -0.6110
127 28 4.9800 25 -3.1030 2.8817 2.0618 1.1170
129 26 2.0421 64 0.1414 0.3105 0.0892 -0.6110
133 23 2.3875 37 2.8425 0.5513 -0.0038 0.9505
134 115 2.3030 234 8.8360 0.3596 -0.2489 13.5090
135 562 -0.1100 3511 -6.3100 -0.9042 -0.9044 5.8207
136 28 3.0400 56 -0.7700 1.0900 0.4085 -0.4664
145 76 10.4757 36 5.1730 13.1250 12.2820 3.3895
146 14 3.2000 11 1.9000 0.9709 0.3512 0.2339
148 194 2.6758 259 0.4858 0.6592 -0.0370 -0.8442
149 194 2.6758 314 0.3240 0.6592 -0.0370 -0.8799
150 13 3.7683 18 0.9000 1.2348 0.5677 -0.2222
151 41 2.7946 124 0.0316 0.9115 0.2428 -0.7509
153 7 4.4500 7 0.3200 0.8838 0.3464 -0.2037
154 68 3.9275 14 0.4141 2.2479 1.4437 -0.2958
155 51 2.3286 70 0.2846 0.4848 -0.1069 -0.6167
158 38 2.4920 93 4.3520 0.6405 0.0299 2.9206
161 44 3.6633 44 1.1987 1.8164 1.0407 -0.2521
167 17 3.0545 21 1.2042 0.9613 0.3306 -0.1315
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